
UNIVERSITY OF CALIFORNIA

Los Angeles

Semiclassical Modeling

of Quantum-Mechanical Multiparticle Systems

using Parallel Particle-In-Cell Methods

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Physics

by

Dean Edward Dauger

2001

© Copyright by

Dean Edward Dauger

2001

To my parents, Alan and Marlene,

who were always fully supportive

of my work and my endeavors.

And Charlie and Allegra, my cats.

And to all those who have a vision,

a dream of something new and inspiring,

to express that Idea,

limited only by its own conclusion

if it has one.

iii

Contents

I. Introduction

A. Motivation ···1

B. Existing Methods ···6

C. Outline ···8

D. Conventions ···9

II. Theory

A. The Approach ···11

B. Feynman Path Integrals···13

C. The Semiclassical Approximation···18

D. Initial Position and Final Momentum···21

E. The Matrix ··23

F. The Determinant ··26

G. Summary ··30

III. Implementation

A. The Numbers ··32

B. The Plasma PIC Code ··36

C. The Quantum PIC Code ··42

iv

D. Boundary Conditions ··53

E. Simulation Parameters···56

F. Alternative Implementations··60

IV. Validation

A. Output ··61

B. Free-Space Gaussian ··62

C. Simple Harmonic Oscillator···67

D. Infinite Square Well ··74

E. Barriers ··80

F. Fermion Statistics ··83

V. The One-Dimensional Atom

A. The Problem ··92

B. The One-Electron Case···93

C. The Two-Electron Case··97

D. Eigenstate Extraction ··100

E. Conclusion ··106

VI. Energy Fluctuations in a Plasma

A. The Problem ··107

v

B. The Model and the Analysis··111

C. Implementation ··112

D. Proper Comparison ··114

E. Quantum Theory and Simulation ··122

F. Conclusion ··131

VII. Future Work

A. The Future ··137

B. One Dimension ··138

C. Higher Dimensions ··141

D. Evolution of the Implementation···146

E. Evolution of the Methods··150

F. Conclusion ··159

VIII. Appendix A - Development of a New Code

A. Experimentation ··160

B. Virtual Particle Distribution···161

C. Alternative Depositing···163

vi

IX. Appendix B - The Quantum PIC Source Code

A. Source Code ··170

B. Main Program ··170

C. External Potential ··188

D. Particle Preparation ··190

E. Particle Push ··197

F. Wavefunction Reconstruction/Particle Deposit·····································200

X. Appendix C - Source Code for Visualization and Data Formats

A. Visualization ··213

B. Quantum Correlation Analysis, Eigenstate Extraction, and Data Reader

··216

XI. References ··260

vii

List of Figures

Figure Page

1 An arbitrary path from x0 to xN . 17

2 A classical path is shown, accompanied by variations on that path. 20

3 Particles in space overlaid with a grid in one dimension. 38

4 Simplified flow chart for the plasma PIC code. 39

5 Particles in space partitioned into four cells. 41

6 Simplified flow chart for the quantum PIC code. 44

7 A virtual classical particle reflecting at one-half grid point behind

the l(x = 0) = 0 boundary of the well. 55

8 Four frames of the evolution of a stationary Gaussian in free space. 64

9 Four frames of the evolution of the ground state of the simple

harmonic oscillator. 69

10 Frames from simulations of the n =1 , n = 5 , and n = 7

eigenstates of the simple harmonic oscillator. 70

11 Three frames from the evolution of an arbitrarily chosen

superposition of the n = 0 , n =1 , n = 5 , and n = 7 eigenstates

of the simple harmonic oscillator. 72

12 Energy spectrum of the simulation shown in Figure 11. 73

13 A moving Gaussian bouncing off a wall of the infinite square well. 75

viii

14 Example eigenstates of the infinite square well. 78

15 Evolution of a Gaussian wavefunction colliding with a square barrier. 82

16 A pair of frames each from a pair of wavefunctions in an infinite

square well. 85

17 Energy spectrum from the evolution of a fermion pair initialized

using the five lowest energy eigenstates of the infinite square well. 88

18 Energy spectrum from the evolution of a fermion pair initialized

using arbitrarily chosen Gaussians. 90

19 Frames from the evolution of an electron bound to a

one-dimensional atom. 95

20 Energy spectrum of a simulation shown in Figure 19. 96

21 Four frames from two-electrons bound to a one-dimensional atom. 98

22 Energy spectrum of the fermionic two-electron simulation shown

in Figure 21. 99

23 Five energy eigenstates extracted from the one-electron

one-dimensional atom simulation seen in Figure 19. 102

24 Five two-electron fermionic eigenstates of

the one-dimensional atom. 104

25 Placement of initial positions of the particles for the hot plasma. 113

26 Energy spectra of the longitudinal electric field in a hot plasma

assuming classical theory. 116

ix

27 Energy spectra of the longitudinal electric field in a hot plasma using a

128-particle plasma simulation that assumes classical theory. 118

28 Energy spectra of the longitudinal electric field in a hot plasma using a

12,800-particle plasma simulation that assumes classical theory. 119

29 Energy spectra of the longitudinal electric field in a hot plasma using a

1,024,000-particle plasma simulation that assumes classical theory. 121

30 Energy spectra of the longitudinal electric field in a hot plasma

using quantum theory and classical theory. 124

31 Three frames from the evolution of a set of Gaussians

representing a hot plasma. 126

32 Energy spectra of the longitudinal electric field in a hot plasma, shown

in Figure 31, while including quantum-mechanical effects. 128

33 A comparison against a classical simulation of the energy spectra of the

longitudinal electric field in a hot plasma, shown in Figure 31, while

accounting for quantum-mechanical effects. 129

34 Energy spectra of the longitudinal electric field in a hot plasma at

low k while accounting for quantum-mechanical effects. 133

35 A comparison of runs using randomly initialized classical

information retained between time steps (top) versus regularly

initialized classical information at every time step (bottom). 162

x

List of Symbols

A Dirac ket of an arbitrary state

A Dirac bra of an arbitrary state

Inner product of a bra with a ket

ˆ x Position operator

ˆ p Momentum operator

x Space coordinate

p Momentum coordinate

x Ket of the position basis at position x

p Ket of the momentum basis at momentum p

ˆ H Hamiltonian operator

π The circumference of a circle divided by its diameter

i Imaginary unity, defined by i2 =−1

h Planck’s constant

 h “h-bar”, Planck’s constant divided by two Pi

t Time coordinate

∆t The Quantum time step

∂t The Classical time step

N The number of classical time steps per quantum time step

xi

∂
∂t

Partial derivative with respect to time

F Force

m Mass

a Acceleration

V(x) Effective potential as a function of position x

dx Space differential

dp Momentum differential

dt Time differential

˙ x Velocity

∀ “for all”

1 Unity or identity operator

subscripts i , j Arbitrary indices

l Particle index

(t) Wavefunction at a time t

0 Initial wavefunction

f Final wavefunction

 L , O , M , N Continuation symbols

L(xi , ˙ x i) The Lagrangian

S Action, the time integral of the Lagrangian along a path

xii

xcli Positions tracing a special path (a.k.a., “classical”)

∂x i Variations off of the special path given by xcli

∂n

∂xn The n th partial derivative with respect to position x

Scl Classical Action

A Temporary constant

S2 Second-order and higher terms of the Action S

Column vector consisting of the variations ∂x i

M The semiclassical matrix

u Constant part of the matrix M

w Variable part of the matrix M

U , U−1 An arbitrary unitary transformation and its inverse

M' The matrix M in a basis of its own eigenvectors

' in the basis of M'

mi The eigenvalues of M (and M')

det(M) The determinant of M

O(1), O(N) “Of Order One”, “Of Order N”

di Determinant of the upper left i × i minor of M

y(t) and w(t) Function version of dt and wt +1 , respectively

T Period

xiii

∂pcl f

∂p0

 Momentum Jacobian

Ψ Total wavefunction

∆x Grid (position) spacing

∆p Momentum spacing

pmax Maximum sampled momentum

(x) x , The state in the position basis

(p) p , The state in the momentum basis

(x,t) x (t) , The state at time t in the position basis

q Charge

Charge density

e The magnitude of the charge of the electron

Electric potential

f (x0 , p0) Temporary value dependent on x0 and p0

j , n Integers

y0 , m Temporary values

Standard deviation

ˆ A , ˆ B Dummy operators

ˆ A Expectation value of ˆ A

ˆ H Energy of the state

xiv

∆x()2
Standard deviation in position

(x)
2

Probability density of at position x

Resonance frequency of a simple harmonic oscillator

c and ˜ c Correlation function and its time Fourier transform

Frequency

n n th eigenstate of a system

L Well width

En Energy eigenvalue of n

12 Two-particle state

n,m Frequency eigenvalue of a two-particle eigenstate

One-dimensional atom potential gradient

˜ () Time Fourier transform of a state (t)

en Arbitrary energy eigenstate

Dirac delta function

k Spatial wavenumber

EL Electric field, longitudinal component

1

8π
EL (k,)

2
Electric field energy density

L Longitudinal permittivity

xv

T Temperature, in energy units

sec second

cm centimeter

eV , keV electron-Volt, 1000 electron-Volts

p Angular plasma frequency

kD Debye wavenumber

v velocity

arbitrary small constant

f (v) velocity distribution of a plasma

z unitless variable for algerbraic convenience

w integration dummy variable

q charge of a one-dimensional particle

n three-dimensional number density

Debye Debye length

deBroglie de Broglie wavelength

g Grid-point basis

g(x) x g , The grid-point function

˜ g (p) p g , The grid-point function in momentum space

ˆ H 1 , ˆ H 2 Hamiltonian operator for particle 1, 2

ˆ H 12 Interaction part of the Hamiltonian operator

xvi

ˆ B , ˆ A [] ˆ B ̂ A − ˆ A ̂ B , Commutator of ˆ B with ˆ A

V1eff Effective potential for particle 1

xvii

Acknowledgements

This work was funded by the Institute for Scientific Computing Research

at Lawrence Livermore National Laboratory (LLNL/ISCR Contract Numbers:

00-08, 99-012, and 98-09) in a collaboration with Dr. Dennis Hewett.

Credit goes to Jose Louis Hales-Garcia and Jan de Leeuw of the

Department of Statistics at the University of California, Los Angeles, for their

permission and generous contributions of computational time and assistance in

using their gSCAD cluster.

The computing platform for this work was entirely Macintosh.

Thanks goes to Dr. Alan B. Dauger for his advice and encouragement, to

Robert M. Zirpoli III for his support during the hard times, and Catherine C.

Venturini for her help, encouragement, and advice in editing this dissertation.

Thanks to Dr. Warren B. Mori for his support, saving the day at the right

moment, and more than once.

And special thanks goes to Dr. John M. Dawson and Dr. Viktor K. Decyk

for their invaluable advice, generous support, and gracious understanding

throughout the course of this work. Their patience and the freedom they

allowed cultivated the fullest exploration of creativity and ideas of all kinds.

xviii

VITA

August 27, 1972 Born, Huntington Beach, California, USA

1992-1994 Software Engineer
HSC Software, Inc.
Santa Monica, California

1994 B. S., Mathematical Physics
Harvey Mudd College
Claremont, California

1994 Technical Support Engineer
Jet Propulsion Laboratory
Pasadena, California

1995 Jon A. Wunderlich Prize
Harvey Mudd College
Claremont, California

1996 M. S., Physics
University of California
Los Angeles, California

1995-1997 Teaching Assistant
Department of Physics
University of California, Los Angeles

1998 Fresnel Diffraction Explorer
Student Winner, Eighth Educational Software Contest
Computers In Physics, American Institute of Physics
College Park, Maryland

1999 Atom in a Box
Student Winner, Ninth Educational Software Contest
Computers In Physics, American Institute of Physics
College Park, Maryland

1998-2000 Software Developer
Project AppleSeed
Department of Physics
University of California, Los Angeles

1995-2000 Graduate Researcher
Department of Physics
University of California, Los Angeles

xix

PUBLICATIONS

D. E. Dauger, “Simulation and study of Fresnel diffraction for arbitrary two-

dimensional apertures”, Computers In Physics, 10 (6), p. 591, (1996).

V. K. Decyk, D. E. Dauger, P. R. Kokelaar, “How to Build an AppleSeed: A

Parallel Macintosh Cluster for Numerically Intensive Computing,”

Physica Scripta, T84, p. 85-88, (2000).

xx

ABSTRACT OF THE DISSERTATION

Semiclassical Modeling of

Quantum-Mechanical Multiparticle Systems

using Parallel Particle-In-Cell Methods

by

Dean Edward Dauger

Doctor of Philosophy in Physics

University of California, Los Angeles, 2001

Professor John M. Dawson, Chair

We are successful in building a code that models many particle

dynamic quantum systems by combining a semiclassical

approximation of Feynman path integrals with parallel computing

techniques (particle-in-cell) and numerical methods developed for

xxi

simulating plasmas, establishing this approach as a viable technique

for multiparticle time-dependent quantum mechanics. Run on high-

performance parallel computers, this code applies semiclassical

methods to simulate the time evolution of wavefunctions of many

particles. We describe the analytical derivation and computational

implementation of these techniques in detail. We present a study to

thoroughly demonstrate the code’s fidelity to quantum mechanics,

resulting in innovative visualization and analysis techniques. We

introduce and exhibit a method to address fermion particle statistics.

We present studies of two quantum-mechanical problems: a two-

electron, one-dimensional atom, resulting in high-quality extractions

of one- and two-electron eigenstates, and electrostatic quasi-modes

due to quantum effects in a hot electron plasma, relevant for

predictions about stellar evolution. We supply discussions of

alternative derivations, alternative implementations of the

derivations, and an exploration of their consequences. Source code

is shown throughout this dissertation. Finally, we present an

extensive discussion of applications and extrapolations of this work,

with suggestions for future direction.

xxii

I. Introduction

A. Motivation

Quantum mechanics is one of the most significant scientific

developments in the twentieth century. The theory is also one of the most

controversial, because it deals directly with phenomena of the universe that are

not easily accessible by unaided human perception, yet at the same time it

provides the essential answers that explain much of what we see around us and

make our existence possible. Some of the consequences of the theory, taken to

their logical extreme, seem to defy a resemblance to reality, yet, by exercising

the proper patience with the concepts, one can find that quantum mechanics

possesses an internally consistent logic all its own and indeed has connections to

our normal perceptions. Further, one may discover familiar pieces embedded

in a world outwardly unfamiliar.

1

Scientists of the early twentieth century were attempting to grapple with

the fundamental nature of matter and light. While scientists at the time were

comfortable with a wave theory of light, derived from Maxwell’s equations,

Planck’s theory of black body radiation, introduced in 1900,1 suggested that

light could behave in discrete units called quanta. In 1905, Einstein 2 extended on

this idea to explain the photoelectric effect, which became additional evidence

for light showing particle behavior.

While scientists were comfortable with a particle model of matter, de

Broglie suggested, in his 1924 thesis 3, that matter has wave properties. In

analogy to the phase of light quanta traveling along light rays, he proposed

that a particle of matter gains phase as it travels. Inspired by the similarity

between Fermat’s principle and the principle of least action, he identified

matter’s phase with the classical action, the integral of the Lagrangian, along the

particle’s path. Reinterpreting Planck’s and Einstein’s light quantization rule

instead for matter, he then applied this idea to create a model of the atom that

quantitatively and conceptually explained Bohr’s earlier model. De Broglie’s

model predicted that electrons will only be stable in particular orbits around a

nucleus because the electron’s phase constructively interferes, resonating like a

standing wave, on the orbit’s path. Seeing light, normally accepted as waves,

behave like particles allowed many to consider the notion that matter, normally

accepted as particles, could behave like waves. The rules governing this

2

behavior came to be known as quantum mechanics .

In 1926, Schrödinger published a series of papers 4 on wave mechanics,

introducing a differential equation satisfying the de Broglie matter-wave model.

In the same year, the WKB method 5 was developed to help find approximate

solutions to Schrödinger’s equation. In 1928, Van Vleck 6 generalized the WKB

method to higher dimensions and derived the appearance of the classical action

in a complex exponential, to be later identified as a propagator. This work was

among the earliest to show connections between classical mechanics and

quantum mechanics.

Inspired by discoveries of Dirac 7, Feynman published his seminal paper

8 on path integrals in 1948. The evolution of a particle could be thought to be a

sum over possible paths whose contributions are described by a propagator.

This paper was significant because it demonstrated explicitly how Feynman’s

rigorous form of path integration could be used to derive quantum mechanics,

clearly establishing the technique’s relevance as a method alternative to that of

Schrödinger. In fact, Feynman’s path integral was a more direct application and

generalization of de Broglie’s idea than Schrödinger’s equation. Also based on

Dirac’s work, he showed how, in typical cases, a sum over these paths through

space could be seen to simplify to a sum of classical paths. The familiar arising

from the unfamiliar, classical dynamics was seen to arise out of a purely

quantum-mechanical concept, providing a clear connection between classical

3

and quantum theory. The term semiclassical was later coined for this apparent

merge of classical and quantum ideas.

Feynman later built on his path integral work. 9 In 1967, Gutzwiller 10

used Feynman’s path integrals to rederive Van Vleck’s propagator with the

addition of phase corrections due to caustics along periodic orbits. These

caustics were identified by properties of the eigenvalues of the semiclassical

matrix, used in the determinant factor that expresses focusing in the application

of the WKB-like methods to semiclassical paths.

In the early 1990s, Heller and Tomosovic produced a series of articles 11-

15 demonstrating accuracy and stability of quantum-mechanical calculations

using long classical paths based on the formula of Van Vleck, Maslov 16, and

Gutzwiller. Some of the techniques built upon the developments of many

others. 17 These and related work 18,19 provided evidence, at least for single

particle cases, for the computational viability of using many classical paths to

answer specific questions about quantum-mechanical systems, including those

that are chaotic.

Meanwhile, plasma physics has developed significantly in the last half of

the twentieth century. Plasmas, by definition, are collections of particles under

the influence of their mutual electromagnetic fields and following paths

determined by classical mechanics. Buneman and Dawson developed the

earliest computational models of plasmas. 20-23 These systems were one-

4

dimensional “sheet models” of the plasma, and efficient computational

techniques for such models were developed. 24 Later, these models were

extended to two and three dimensions by introducing methods to efficiently

solve for electrostatic fields and combining the use of grid points 25 with the

application of a Fast Fourier Transform (FFT) algorithm 26 to solving Poisson’s

equation in Fourier space 27. These developments made efficient modeling of

multidimensional plasmas possible.

Further improvements in plasma modeling came in step with the

evolution of computational hardware. In particular, Particle-In-Cell (PIC)

techniques to model plasmas on parallel computing hardware has seen great

strides in work by Dawson, Decyk, and others. 27-33 Such plasma PIC

simulations effectively and efficiently utilize such computational resources,

achieving 90% parallelism and 40% of estimated peak hardware speed. In the

1990s, problems involving up to 2 ×108 particles on 32 ×106 grid points in three

dimensions have become possible. These methods are shown to be robust and

portable 34,35, and have run successfully on a wide range of computers (e.g.,

Cray-90s, T3Ds, T3Es, SGIs, IBM SP2s, and Macintosh clusters 36).

Dawson, familiar with the efficiency of these plasma methods to manage

particles and calculate their classical paths, conceived of the idea to apply these

techniques to the classical paths in the semiclassical methods referred to by

Heller and Tomsovic 13. If we assume thousands of classical paths could be

5

used to evolve a system of one quantum particle, then could millions of classical

paths be used to evolve a system of hundreds, or perhaps thousands, of

quantum particles?

If successful, such a code could model scores of phenomena where

quantum effects are important and answer some of the most difficult questions

involving quantum mechanics. This modeling method would allow a detailed

investigation of optical properties, ionization potential, conductance, and a host

of other experimentally determined material properties. This tool could be

used for the design and physical understanding of devices where quantum

mechanics is important. Ultimately, with the incorporation of multiple

dimensions, spin phenomena, and electromagnetism, this method would be

able to model atoms, chemical reactions, quantum electronics, solid-state

physics, and a multitude of other addressable physical problems. Cross-

pollinated from plasma computation and semiclassical and quantum theory,

this idea and its potential implications are the motivation of this work.

B. Existing Methods

Other methods that address quantum behavior exist, varying in

complexity and accuracy. Among the candidates are mean-field methods and

their extensions applied to solutions determined using the Schrödinger

6

equation, usually in a finite-difference or FFT form. 37-39 Other methods exist

that approximate the particles as Gaussian wavepackets. Some use a “frozen”

Gaussians, i.e., those of fixed width, 40 to evolve a wavefunction, while others

use Gaussians with parameters that change in response to the system. 41

Finally, many applications of semiclassical methods and their derivatives

have been accomplished. These are usually directed at particular properties of a

quantum system, most commonly the energy spectrum, using a wide variety

of approaches. 11,13,15,17,19,42-50 Some have met with great success, and some

are limited in quality for long time scales. The author finds the reference by

Schulman 17 to continue to be an excellent authority on path integration, while

other references 51 reflect more recent work.

Computational application of semiclassical methods most commonly use

the Van Vleck-Gutzwiller-Maslov propagator. For example, based on work by

Heller 52, Simontti et al 53 have developed clever methods for solving for time-

independent eigenstates of two-dimensional billiard-type quantum systems.

They focus on constructing the eigenstate data at the boundary of the system

using a superposition of plane waves determined by segments of periodic

classical orbits they locate in the system. Their methods use the Van Vleck-

Gutzwiller-Maslov propagator to determine relevant properties of these

periodic orbits. They then use Green’s theorem to derive the interior of the

eigenstate using the boundary information. Other work on time-dependent

7

propagation of wavefunctions using classical paths and that propagator are rare

and meet with limited success. 11

To the author’s knowledge, the work presented in this dissertation is the

first to directly use classical paths to accurately propagate time-dependent

quantum wavefunctions. In this work, the author derives a propagator directly

from basic quantum mechanics and Feynman path integrals. This propagator is

designed for the computational time-dependent evolution of dynamic

discretized wavefunctions. Its derivation is guided by the form of the Van

Vleck propagator, Gutzwiller’s work, and a section of Chapter 14 of Schulman

17 . Otherwise, this propagator, its development, implementation, study, and

application are new and not found in previous literature. This work is also the

first to use these methods to simulate the dynamics of many (i.e., hundreds)

mutually interacting quantum wavefunctions.

C. Outline

This dissertation is an exposition of methods used to combine the

semiclassical methods for solving quantum-mechanical problems with

computational techniques from plasma PIC simulations for implementation on

parallel computers. It is meant to serve as a guide for future use and

development of both the existing quantum PIC code and any future codes

8

using similar techniques. These chapters show that this work contains a highly

unique blend of quantum mechanics, classical mechanics, integration methods,

numerical methods, parallel computing techniques, and verification and

validation techniques.

Chapter II provides the theoretical foundation of the methods used to

evolve quantum-mechanical wavefunctions. Chapter III describes how these

equations were implemented in the actual code, defining and presenting each of

its parts. Chapter IV presents and builds on a study, using basic quantum

mechanics, applied to validate the quantum PIC code and demonstrate its

capabilities. Chapter V presents an application of the quantum PIC code to the

one-dimensional atom, and Chapter VI shows the code’s application to energy

fluctuations in a plasma. Chapter VII suggests the future possibilities of this

code and others like it. Appendix A describes ideas, and their consequences,

that were developed in the course of the research that led to the solution

presented here. Appendix B and C provide key portions of the source code of

the quantum PIC code, the code used to visualize the results, and other related

code.

D. Conventions

The convention used in this presentation uses the Dirac bra-ket notation

9

() to represent wavefunctions. The position operator ˆ x has an associated

complete position basis set x{ } , and its dual is the momentum operator ˆ p

with its complete momentum basis set p{ } . These spaces are related through

the Fourier transform kernel, x p =
1

h
exp(

2πixp

h
) , where h is Planck’s

constant. The time-dependent Schrödinger equation is

ˆ H = ih

∂
∂t

, where

ˆ H is the Hamiltonian operator and h ≡ h 2π . This convention is best expressed

in a reference by Townsend. 54

10

II. Theory

A. The Approach

Our approach to evolving a set of quantum-mechanical wavefunctions is

the following: Each wavefunction can be evolved using a large number of

arbitrary paths. Because of the nature of the contributions of these paths, the

total contribution can be simplified to just those from the classical paths. These

contributions form the wavefunction at the new time step. Duplicating this

procedure for all wavefunctions updates the entire system to the new time step,

allowing the process to repeat.

We begin with the paths used for Feynman path integrals. 8 More

commonly used in quantum field theory, these paths begin at an initial position

in the wavefunction at the earlier time step, weave their way through space,

and end at a final position in the wavefunction at the later time step. The

11

contribution of this path is the product of the wavefunction evaluated at the

beginning of the path and a complex number whose phase is proportional to

the action, the integral of the Lagrangian, along that path. These contributions

are summed to form the new wavefunction.

The technique used to simplify the contributions to the classical paths is

called a “semiclassical approximation”. Although not exactly identical, it has

much in common with WKB techniques and stationary-phase methods. It

involves summing the contributions from paths with the same initial and final

positions. The result is that the paths in the vicinity of the path whose action is

an extremum provide the most significant contributions. The property of these

paths to focus on is their phase. The phase difference between paths changes as

a function of their variation off the extremum path. In part because Planck’s

constant is so small, it tends to be the case that this phase difference increases

quickly with variation. This property is essential to this approximation. Its key

is in showing that this rapid variation in phase causes their contributions to

cancel each other. This cancellation dominates over all other effects. The special

path with the extremum action, also found using the Lagrangian-based calculus

of variations of classical mechanics, is called the classical path.

In the following sections, we will show derivations of the semiclassical

methods, from their start in basic quantum mechanics to the complete

contributions of the classical paths given by the semiclassical approximation.

12

We show these derivations because of two problems found in the course of this

work: 1. Such calculations could not be found together in detail in any other

source. 2. Previous results (such as the Van Vleck-Gutzwiller-Maslov 19

propagator) were found to be inappropriate to this application. To overcome

these difficulties, the author reconstructed the semiclassical derivations from

basic quantum theory and customized them for this dissertation’s application,

resulting in a new technique not found in previous literature. In the context of

quantum field theory, virtual particles are said to follow the paths forming a

Feynman path integral. Likewise, we coin the term “virtual classical particles”,

which trace the classical paths in this discussion.

B. Feynman Path Integrals

The theoretical basis for the quantum-mechanical methods used here is

the Feynman path integral. We begin with a result of the time-dependent

Schrödinger equation, which will allow us to derive a precise Feynman path

integral more quickly. Consider the time evolution of one wavefunction, ,

over an interval from t to t + ∆t ,

(t + ∆t) = exp(−

i ˆ H ∆t

h
) (t) (1)

where h is Planck’s constant divided by 2π, and ˆ H is the complete Hamiltonian,

13

ˆ H =
ˆ p l

2

2ml
∑ + Vl(ˆ x l)

l
∑ (2)

where Vl is the effective potential encountered by particle l . Define

f ≡ (t +∆ t) and 0 ≡ (t) . We then divide this time interval into N

intervals, each spaced by ∂ti :

f = exp(−
i ˆ H ∂tN

h
)exp(−

i ˆ H ∂tN −1

h
)Lexp(−

i ˆ H ∂ti +1

h
)exp(−

i ˆ H ∂ti

h
)L

Lexp(−
i ˆ H ∂t2

h
)exp(−

i ˆ H ∂t1

h
) 0

(3)

such that

∂t i
i =1

N

∑ = ∆t and ∂ti > 0 , ∀i . (4)

Next, insert 1 = dxi xi x i∫ , for 0 ≤ i ≤ N , in between the exponentials:

f = dx j
j = 0

N

∏∫ xN xN exp(−
i ˆ H ∂tN

h
) xN −1 xN−1 exp(−

i ˆ H ∂tN −1

h
) xN −2 L

L x i exp(−
i ˆ H ∂t i

h
) x i−1 L x1 exp(−

i ˆ H ∂t1

h
) x0 x0 0

(5)

This is an N+1-dimensional integral.

Consider the ith term, for 1 ≤ i ≤ N , of the above product. Insert

14

1 = dpi pi pi∫ :

xi exp(−

i ˆ H ∂ti

h
) xi −1 = dpi∫ xi exp(−

i ˆ H ∂ti

h
) pi pi xi −1 (6)

We assume ∂ti is small, substitute the Hamiltonian, and multiply through:

xi exp(−

i ˆ H ∂ti

h
) pi ≈ x i (1−

i ˆ H ∂ti

h
) pi = xi pi −

i∂ti

h
(x i

ˆ p 2

2m
pi + x i V (ˆ x) pi)

(7)

where the particle indices of the operators are assumed. Hitting the kinetic

energy term on the momentum ket and the potential term on the position bra

and factoring yields:

xi exp(− i ˆ H ∂ti

h
) pi ≈ x i pi 1− i∂t i

h
pi

2

2m
+ V(xi)

≈ x i pi exp −
i∂ti

h
pi

2

2m
+ V(x i)

(8)

Combining (8) with

x p =

1

h
exp(

ixp

h
) , the integrand of (6) becomes

xi pi exp −

i∂t i

h
ˆ p i

2

2m
+V (xi)

 pi x i −1 =

1

h
exp

ipi(xi − xi −1)

h
−

i∂ti

h
pi

2

2m
+ V(xi)

(9)

We define ˙ x i ≡
xi − xi −1

∂ti

, substitute, and factor:

15

1

h
exp

i∂ti pi
˙ x i

h
−

i∂ti

h
pi

2

2m
+ V(x i)

 =

1

h
exp −

i∂ti

h
pi

2

2m
− pi

˙ x i + V (x i)

 (10)

Completing the square and factoring gives

xi exp(− i ˆ H ∂ti

h
) xi −1 = dpi∫

1
h

exp − i∂t i

h
(pi − m ˙ x i)

2

2m
− m ˙ x i

2

2
+ V(xi)

=
1

h
exp

i∂t i

h
m ˙ x i

2

2
− V(x i)

 dpi∫ exp −

i∂ti

h
(pi − m ˙ x i)

2

2m

(11)

The integral is a Gaussian integral with a complex exponential, which is solvable

using a convergence factor. Also, if we define L(xi , ˙ x i) ≡
m ˙ x i

2

2
− V(x i) , then

xi exp(−

i ˆ H ∂ti

h
) xi −1 =

1

h
exp

iL(x i , ˙ x i)∂t i

h

2πimh
∂ti

= exp
iL(xi , ˙ x i)∂ti

h

im

h∂ti

(12)

Note that we recognize L(xi , ˙ x i) as the Lagrangian. Inserting this expression

into (5) yields

f = dx j
j = 0

N

∏∫ xN

im

h∂t

N 2

exp
i

h
L(xi , ˙ x i)∂ti

i =1

N

∑

 x0 0 , (13)

which is the path integral from 0 to f using discrete time steps. In some

notations 9, a D is used for the product of differentials. (13) is called a Feynman

16

path integral. (The above derivation is largely similar to one in Chapter 8 of

Townsend. 54)

Note that the sum inside the exponential is a time integral of the

Lagrangian on a path described by xi{ } (which uniquely determine ˙ x i{ }). This

sum is the action S along this path:

S ≡ L(xi , ˙ x i)∂ti
i=1

N

∑ (14)

These paths are diagrammatically shown in Figure 1.

∆t

x0
x

∂ti

xN

xi

t

(t)

(t + ∆t)

Figure 1. An arbitrary path from x0 to xN . Paths like this one link contributions

from (t) to (t + ∆t) with a phase difference determined by the action on

this path.

17

Note that, at this point, other than the modest requirements used so far, the

paths are arbitrary and unrestricted. The particles that follow these paths are

called virtual particles.

C. The Semiclassical Approximation

We now consider variations ∂x i{ } from a special path we label xcli{ } ,

where 1 ≤ i < N . Further definition on the properties of xcli{ } will be made

shortly. We set xi = xcli +∂xi with xcli being independent of xi , for 1 ≤ i < N .

From this point forward, let us set ∂ti =∂ t = ∆t N . We may apply this

substitution to the path integral in (13), but, for the moment, let us focus on the

action.

S =
m(xcli − xcli −1 +∂x i −∂x i −1)2

2∂t2
− V(xcl i

+∂x i)

i = 2

N

∑ ∂t

+
m(xcl1

− x0 +∂x1)2

2∂t2
− V(xcl1

+ ∂x1)

 ∂t

(15)

We assume ∂x i{ } are small and use a Taylor’s series expansion of V to organize

S in powers of ∂x i .

18

S =∂ t

m(xcl i
− xcl i −1

)2

2∂t2
− V(xcl i

)

+
m(xcl i

− xcl i −1
)(∂x i − ∂x i −1)

∂t2
−

∂V

∂x xcli

∂xi

+ m(∂xi −∂xi −1)
2

2∂t 2
− ∂2V

∂x 2
x cli

∂x i
2

2

−
∂ 3V

∂x3

xcl i

∂xi
3

3!
+ L

i = 2

N

∑ + ∂t

m(xcl1
− x0)2

2∂t2
− V(xcl1

)

+
m(xcl1

− x0)∂x1

∂t 2
− ∂V

∂x x cl1

∂x1

+ m∂x1
2

2∂t2
− ∂ 2V

∂x2
xcl1

∂x1
2

2

−
∂3V

∂x3

xcl1

∂x1
3

3!
+ L

(16)

Note that the kinetic energy component only contributes to the lowest three

orders.

Let us consider with the terms that are first order in ∂x i . We now finish

the definition of xcli{ } : we define that these values are such that the first order

terms in this sum are zero. Since the ∂x i are independent of each other, their

coefficients must each be zero for this condition to be true. Collecting terms in

∂x i , for 1 < i < N , implies that,

−
m(xcl i+1

− xcl i
)

∂t2 +
m(xcl i

− xcli −1
)

∂t 2 −
∂V

∂x x cli

= 0 (17)

Arranging the terms into a more familiar form, we have

−
∂V

∂x xcl i

= m

(xcli +1 − xcli)

∂t
−

(xcli − xcli −1)

∂t
∂t

, (18)

and we recognize that this is the time-centered discrete form of F = ma . Also

19

note that the time-discrete velocity expressions are time-centered at half steps

relative to the time centering of the position variables. This is consistent with

the leap-frog method used to numerically trace classical paths. Hence, we

recognize that the path described by xcli{ } is a classical path, justifying its label,

cl . Also, it becomes reasonable to name the particles that follow these paths

virtual classical particles.

Figure 2 depicts a classical path accompanied by its associated variations.

∆t

x0
x

∂t

xc lNt

(t)

(t + ∆t)

Figure 2. A classical path is shown, accompanied by variations on that path. The

virtual classical particles link the quantum wavefunctions.

It is the contributions of a multitude of these classical paths, at a variety

20

of positions and momenta, that construct the final wavefunction from the initial

wavefunction. Also, we make the following distinction: We name ∂t the

classical time step because it is the time that separates steps of the classical path,

but ∆t is the quantum time step because it is the interval between evaluations of

quantum wavefunctions.

D. Initial Position and Final Momentum

We need to consider how to connect the ends of these classical paths to

the initial and final wavefunctions. Using the criterion for the term first order in

∂x1 , we have an initial constraint:

−
∂V

∂x xcl 1

= m

(xcl 2 − xcl1)

∂t
−

(xcl1 − x0)

∂t
∂t

(19)

This links the classical path to the integral over x0 .

Now we consider the final constraint. Let us insert 1 = dpf p f p f∫

before the xN in (13), resulting in:

f = dp f dx j
j=1

N

∏∫ p f

im

h∂t

N 2 1

h
exp(−

ixN p f

h
)exp

i

h
S

 x0 0 (20)

Performing the above substitution and requiring that the coefficient of the ∂xN

21

be zero implies the following constraint:

−
p f

∂t
+

m(xcl N
− xcl N −1

)

∂t2 −
∂V

∂x x cl N

= 0 (21)

Rearranging gives

−
∂V

∂x xcl N

=
p f −

m(xc lN − xclN −1)

∂t
∂t

(22)

(18) gives N-2 constraints on xcli{ } , and (19) and (22) provide the (N-1)th and

Nth constraint, allowing xcli{ } to be uniquely identified by x0 and p f .

Rewriting f :

f = dp f∫ dx0∫ p f

1

h
exp(−

ixclN p f

h
)exp

i

h
Scl

 A x0 0 (23)

where

Scl ≡ ∂t
m(xcl i

− xcli −1
)2

2∂t 2 − V(xcli)

i =1

N

∑ , (24)

(using xcl 0 ≡ x0) the zeroth order terms of the action,

A = d(∂xi)
i =1

N

∏∫ im

h∂t

N 2

exp
i

h
S2

 , (25)

a N-dimensional integral, and

22

S2 =∂ t

m(∂x i − ∂x i −1)
2

2∂t2
− ∂ 2V

∂x2
x cli

∂xi
2

2

−
∂3V

∂x3

xcli

∂xi
3

3!
+ L

i = 2

N

∑ +∂ t

m∂x1
2

2∂t 2
− ∂ 2V

∂x2
x cl1

∂x1
2

2

−
∂3V

∂x3

x cl1

∂x1
3

3!
+ L

, (26)

the second order terms and higher of the action. A substitution, p f = pclf (p0)

(using p0 ≡ m
x

cl1
− x0

∂t
), can be used to identify these paths using initial

conditions only.

E. The Matrix

(This section largely follows Chapter 14 of the Schulman reference 17 ,

with significant points of customization.) Consider S2 . Let us assume that the

terms higher than second order in ∂x i are neglectable. This allows us to write

S2 in the following form:

S2 =
m

2∂t
jM j

i
i , (27)

using the Einstein summation convention, where ≡ ∂x1,∂x2,L,∂xN()T
, M is a

tridiagonal N × N matrix,

23

M = u − w =

2 −1 0 L L 0

−1 2 −1 M
0 −1 2 O M
M O O O 0

M O 2 −1

0 L L 0 −1 1

−

w1 0 L 0

0 w2 M
M O 0

0 L 0 wN

, (28)

 and

wi ≡
∂t2

2m

∂2V

∂x2

x cli

. (29)

For any matrix M , there exists a unitary transformation U so that

M' = UMU −1 is diagonal. The basis set of M' maps to the eigenvectors of M . In

the new basis set, ' = U = ∂x'1 ,∂x' 2 ,L,∂x' N() and M' is diagonal:

M' =

m1 0 L 0

0 m2 M
M O 0

0 L 0 mN

(30)

where mi are the eigenvalues of M (and M'). Therefore S2 may be rewritten

as:

S2 =
m

2∂t
' j M' j

i ' i =
m

2∂t
∂x' i

2 mi
i=1

N

∑ (31)

This makes A separable:

24

A = d(∂x' j)
j =1

N

∏∫ im
h∂t

N 2

exp
i
h

m
2∂t

∂x' i
2 mi

i=1

N

∑

=
im

h∂t

N 2

d(∂x' i)∫ exp
im

2h∂t
mi∂x' i

2

i =1

N

∏

(32)

The integrals are Gaussian, so A simplifies:

A =
im

h∂t

N 2 2πh∂t

im ⋅ mii=1

N

∏ =
im

h∂t

N 2 h∂t

im

N 2
1

mi
i =1

N

∏
=

1

det(M')
(33)

because the determinant of a diagonal matrix is the product of its elements. But

since det(M') = det(UMU−1) = det(U)det(M)det(U−1) = det(M) ,

A =
1

det(M)
(34)

(There are issues concerning when this determinant goes to zero, but that will

be addressed in the next section.)

Then f becomes:

f = dp f∫ dx0∫ p f

1

hdet(M)
exp(−

ixclN p f

h
)exp

i

h
Scl

 x0 0 (35)

a two-dimensional integral, with M defined above.

25

F. The Determinant

(At this point, this discussion substantially diverges from Schulman’s 17

and, to the author’s knowledge, is not expressed elsewhere.) Let us take a

closer look at evaluating the determinant of the above matrix. At first glance, it

appears calculating this determinant may be necessary to allocate at least O(N)

storage, but an alternative approach was developed to reduce the storage to

O(1). This approach was developed to find a convenient form to calculate it

numerically, but it also shows the likelihood of it causing the determinant to

become singular, which is the results from the “conjugate points” and

“caustics” studied at length in other references 10,13,17-19,51.

Let us consider the determinant of an i × i upper-left minor of M and call

it di . For 2 < i < N ,

di =

2 − w1 −1 0 L L 0

−1 2 − w2 −1 M
0 −1 2 − w3 O M
M O O O 0

M O 2 − wi −1 −1

0 L L 0 −1 2 − wi

(36)

Evaluating this determinant by minors gives:

26

di = (2 − wi)

2 − w1 −1 0 L 0

−1 2 − w2 O M
0 O O O 0

M O 2 − wi− 2 −1

0 L 0 −1 2 − wi−1

− (−1)

2 − w1 −1 0 L 0

−1 2 − w2 O M
0 O O O 0

M O 2 − wi −2 0

0 L 0 0 −1

(37)

But we may recognize that the first determinant is di −1 and the second becomes

(−1)di − 2 .

Therefore,

di = (2 − wi)di −1 − di− 2 (38)

There are a few special cases: For dN , d1 , and d2 :

dN = (1− wi)dN −1 − dN − 2 (39)

d1 = (2 − w1) (40)

d2 = (2 − w2)d1 −1 (41)

Or (38) may be used to calculate d2 and d1 if we define

d0 ≡ 1 (42)

and

d−1 ≡ 0 (43)

The above expressions provide a complete description, in the form of an

iterative method, for evaluating the determinant of M . Algorithmically, this

27

evaluation can be performed alongside the evaluation of the classical path using

(18) with a minimum of storage space, because wi is only a function of xcli .

Rearranging (38) gives

(di − 2di −1 + di −2) + widi −1 = 0 (44)

We recognize that this is a time-discrete leapfrog-method form of the following

ordinary differential equation:

dy(t)

dt
+ w(t)y(t) = 0 , (45)

which is the simple harmonic oscillator equation with a time-dependent

frequency term, where y(t) = dt and w(t) = wt +1 =
∂t2

2m

∂ 2V

∂x2

x clt+1

. Interpreting (40)

and (41) in this context implies the following initial conditions on y :

y(0) ≡1 (46)

˙ y (0) ≡1 − w1 (47)

The determinant is given by y(N) − y(N −1) .

Let us investigate the likelihood of dN becoming zero. For the sake of

argument, let us make w constant. If w = 0 , then y begins at 1 and increases

linearly without bound, resulting in a determinant of 1. If w < 0 , which

corresponds to a defocusing V , then y will increase without bound

exponentially, resulting in a determinant greater than 1.

However, if w > 0 , corresponding to a V that focuses, then y will behave

28

as a sine wave with a period of:

T =
2π

w
(48)

Because the initial conditions are non-zero with a positive slope and w is

typically less than 1, ˙ y will not become zero within one eighth-period.

Therefore, if we wish to be sure of never encountering a path whose

determinant becomes zero, then

N <
π

4 w
=

π
4∂t

2m
∂2V

∂x2 , (49)

but ∂t is dependent on N , so the requirement becomes

∆t <
π
4

2m
∂2V

∂x2 (50)

Here we have a recommended upper bound on ∆t , the time between quantum

wavefunction evaluations, depending on the physics of the system. This is a

worst case scenario, when V has a period of sustained focusing (e.g., in the

simple harmonic oscillator). To the author’s knowledge, this prediction (50) is

not made and utilized elsewhere.

For typical physical parameters, however, other issues, such as changes

in the effective V due to the movement of other particles, will require a ∆t

significantly smaller than required by (50). In practice, the period is long

enough (or
∂ 2V

∂x2 is small enough) so that dN , at worst, remains within 1% of 1.

29

G. Summary

We now have a method to time-evolve quantum wavefunctions using

classical calculations designed for computation. Here we gather the equations

in preparation for implementation. We calculate the following double integral:

(t + ∆t) = dp0∫ dx0∫ pclf

∂pcl f

∂p0

1

hdet(M)
exp(−

ixcl N
pcl f

h
)exp

i

h
Scl

 x0 (t)

(51)

A large number of classical paths, each uniquely identified by the dummy

variables x0 and p0 ≡ m
x

cl1
− x0

∂t
 are traced using:

−
∂V

∂x xcl i

= m

(xcli +1 − xcli)

∂t
−

(xcli − xcli −1)

∂t
∂t

(18)

over N = ∆t ∂t time steps (using xcl 0 ≡ x0). The action along each path, Scl , is

given by:

 Scl ≡ ∂t
m(xcl i

− xcli −1
)2

2∂t 2 − V(xcli)

i =1

N

∑ (24)

Simultaneous with the evaluation of each classical path, det(M) is calculated

using an iterative method:

di = (2 − wi)di −1 − di− 2 , (38)

30

for 1 ≤ i < N , using initial conditions

d0 ≡ 1 and d−1 ≡ 0 (42) & (43)

where

 wi ≡
∂t2

2m

∂2V

∂x2

x cli

(29)

The determinant itself is

det(M) = (1− wN)dN −1 − dN − 2 (52)

Finally, the final classical momentum, pclf , is given by:

−
∂V

∂x xcl N

=
pclf −

m(xclN − xc lN−1)

∂t
∂t

(53)

This completes the time evolution of .

31

III. Implementation

A. The Numbers

We now need to focus on implementing the methods described in the

last chapter to a numerical technique appropriate for current computer

hardware. This chapter defines and details the organization of these

semiclassical calculations to evolve quantum wavefunctions. The following

presentation introduces methods and results that are new and have not been

located in any previous literature.

The total wavefunction is assumed to be separable into wavefunctions

for each particle.

Ψ = l
l

∏ (54)

We represent each wavefunction on a set of grid points in space, thus

discretizing the wavefunctions. Each l(x) ≡ x l is a complex number. All

32

wavefunctions are begun with a complete description of their initial state at

t = 0 . At any time t , the information contained in all the l(x) ‘s alone is used to

update the wavefunctions to the next ∆t .

(51) contains a prescription for the organizing the classical paths. The

obvious solution is to approximate the integral over x0 with a sum, and assign

values of x0 to the grid points used to represent l(x) . However, what is

missing is how to link these paths to the grid point representation of the final

wavefunction. Clearly defining this link is very important for the correct

evolution of these discretized wavefunctions. We show this link by hitting a

x f bra on both sides of the equation. (51) becomes

x f (t + ∆t) = exp(
ix f pcl f

h
)exp(−

ixcl N
pcl f

h
)
exp iScl h()
h det(M)

x0 (t) ∆x∆p

x0

∑
p0

∑ (55)

(We assume the majority of the effects on this value will be due to phase

variations between classical paths, expressed in Scl , therefore we assume

∂pcl f

∂p0

 varies negligibly from 1.) Each l(x f ,t + ∆t) acquires the value of a

double sum. Note that the classical paths can weave, and end, in between grid

points and at the same time (55) provides a means to link the initial and final

wavefunctions on the same set of grid points. This feature is not provided in

other theoretical studies of the semiclassical method.

33

One other issue to examine is the range of momenta. The paths of the

original path integral essentially explore all of phase space. The conversion to

classical paths allows us to “strategically poll” phase space, but the sampling

needs to be just as thorough. We have established that x0 will range over all

grid points, which is the entire space of the calculation, so it seems reasonable to

say that p0 will range over all momenta of the calculation. What is the range of

possible momenta of this calculation? The Nyquist theorem states that a

maximum frequency can be represented on a series of grid points in time. This

theorem has a simple extension to the greatest momenta that can be

represented using grid points in space.

pmax = h 2∆x (56)

where ∆x is the grid spacing and h is Planck’s constant. Since the

representation is complex, negative momenta are allowed, so the range of p0 is

− pmax < p0 < pmax . The resolution of the momentum representation of the

wavefunction, l(p) , is the same as that of the position representation. Since

we justified the spatial resolution using l(x) , it seems reasonable that the

resolution of the p0 distribution should be at least that of l(p) . Although this

is not a formal argument, the success of this momentum distribution has been

seen empirically.

The general prescription for time evolving the wavefunction is as

follows, guided by (55) from right to left.

34

Particle Preparation - Begin with a large array of virtual classical particles.

Each starts from a grid point, x0 , of l(x,t) , and particles that start from

the same grid have a range of initial momenta, p0 < pmax . With each

virtual classical particle, remember the value of the initial wavefunction

at the particle’s start, l(x0,t) .

Particle Pushing - Trace the classical path of each particle using (18), but

accumulate its action using (24), and determinant values using (38).

Particle Depositing/Wavefunction Reconstruction - For each virtual

classical particle, at the end of its path, calculate the product of the initial

wavefunction, square root of the determinant, and complex exponentials

based on the information contained in l(x0,t) , Scl , xc lN , pclf , and det(M)

(using (52)). Then x f ranges over all the grid points in l(x,t +∆ t) . The

complex number resulting from the classical path is then multiplied by

the leftmost complex exponential in (55) and this product is accumulated

into l(x f ,t + ∆t) . Completing this task for all x f finishes the deposit of

that virtual classical particle into the final wavefunction. Completing this

task for all such particles reconstructs the entire final wavefunction.

The above procedure assumes that the effective potential on each l have been

established prior to the particle pushing. The details of that calculation depend

35

on the selected physics of the problem, such as interactions between quantum

particles.

There are a few points to note:

• Once all l(x,t +∆ t) are complete, the procedure may start anew to

calculate l(x,t + 2∆t) , and so on.

• The amount of data retained between quantum time steps are no more

than that of the l(x) .

• Once l(x,t) (and the effective potential) at a particular time t is

established, the calculations preparing, pushing, and depositing the

virtual classical particles can be performed in any order. This

observation encourages us to use a style of implementation suitable for

computers with multiple processors.

B. The Plasma PIC Code

Particle-in-Cell (PIC) implementations have been used with great success

in modeling plasmas. Such an implementation assumes a particle-based model

of a plasma. In contrast to a fluid-based model, which calculates the result of a

finite-difference form of differential equations that assume the plasma behaves

as a continuum, the particle model calculates the motions of a multitude of

36

individual particles. These particles, possessing mass and charge, follow

motions due to their mutual electromagnetic fields in a way consistent with

classical mechanics (i.e., the extremum of the action, consequently F = ma). The

simulations successfully show plasma dynamics using only this “first-principles”

approach.

The Plasma Physics Group at UCLA has developed efficient and effective

methods for using parallel computers to carry out PIC simulations. Their

codes, achieving ≈90% parallelism and ≈40% of estimated peak speed, have

handled over 2 x 108 particles on 32 x 106 grid points in three-dimensions. 27-33

The methods are robust and portable 34,35 and have run successfully on a wide

range of parallel computers (e.g., Cray-90’s, T3Ds, T3Es, and IBM SP2s).

What is interesting to note is that much of the success of the plasma PIC

code is possible because of how well it manages the simulation of and

interactions between a very large collection of particles obeying classical

behavior. Knowing the demonstrated success of such techniques in modeling

plasmas, J. M. Dawson conceived of the idea to apply the same techniques to

managing the classical paths expressed in the semiclassical methods derived for

quantum mechanics. A plasma PIC code was converted to a quantum PIC

code, but, because of the importance of the structure of the plasma PIC code to

a quantum simulation of this type, we describe the plasma PIC code here. In

this particular case, the code assumes that the interactions are electrostatic.

37

The particles in the plasma simulation are distributed in a region of

space. Each particle is defined to have a position and velocity in this space.

Also, to facilitate the interaction calculations, a regular set of grid points are

defined in this space. The particles usually significantly outnumber the grid

points, and may reside anywhere in between the grids. The particles, residing

in a space of grid-points, is depicted in Figure 3.

x

Figure 3. Particles in space overlaid with a grid in one dimension.

Figure 4 shows a simplified flow chart for the plasma PIC code.

38

Figure 4. Simplified flow chart for the plasma PIC code.

The code has three major steps:

Charge Deposit - Given the positions and charges of the particles, the

charge deposit routine accumulates the charge contributions due to each

particle onto a the grid defined by the grid points. Often, the particles

are considered to have a width comparable to the grid spacing, so their

charge contributes to more than one grid point. A number of charge

sharing techniques are also used. This routine generates a charge

density on a grid throughout space.

Field Solve - Then, the electrostatic field and electrostatic potential are

calculated given the charge density from the depositor. It generates this

information by performing a Fast Fourier Transform (FFT) of the charge

39

density, then multiplying this density in Fourier space by a kernel

corresponding to the Poisson equation, finally using an inverse FFT to

generate the electrostatic field and potential. The speed of this method

of solving for fields largely motivates the use of grid points.

Particle Push - Here, the velocities and positions of the particles are

updated using the electrostatic field. The field at a particle’s position is

interpolated from the electric field at neighboring grid points. Often the

leap-frog method is used here for its balance of stability, speed, and

accuracy. The routine calculates one leap-frog iteration per particle. The

bulk of the CPU time is spent here, due to the sheer number of particles.

Once the particle push is finished, the particles have new positions, which are

used in the charge deposit to repeat the process.

Described so far is how the plasma code as a whole works, but it

becomes important how to implement this computation on parallel computers.

The key is how to organize the work distributed between processors. Here we

use a parallel implementation of a technique originally named General

Concurrent Particle-in-Cell. 55 Today it is commonly referred to as Particle-In-

Cell (PIC), and we use a version of it for parallel computers called Parallel PIC.

On a parallel system containing N processors, the space is divided into N

regions called cells. Each processor is responsible for the physics inside its cell.

This means that every step in the plasma code must be partitioned in this way.

40

A portion of particles is in each cell, hence the name of the approach. The

particles, partitioned by cells, is depicted in Figure 5.

x

Cell

Figure 5. Particles in space partitioned into four cells.

Each processor is responsible for the particles and grid points assigned to

it, and communicates with the other processors only when necessary. For

example, the charge depositor is easy to organize, since each processor is

depositing particle charge only on to its own grids. Only at the end of this step

do the processors need to stitch together the charge densities at the edges of

their cells.

The field solver is more complicated, as it needs to accomplish FFTs on a

grid distributed across multiple processors. In one-dimension, this problem is

handled using a custom version 56 of the FFT algorithm designed for this

purpose.

Once the electrostatic field information is properly distributed between

processors, the particle pusher on each processor updates the particle positions

41

and velocities as in the nonparallel case, but some of the particles may move

out of their original cell. A particle manager must then determine which

particles have left its original cell and which processor they should subsequently

reside in. It then forwards each particle to the processor corresponding to the

cell it just entered.

C. The Quantum PIC Code

We now describe a prescription to create the quantum PIC code from

the plasma PIC code. The quantum PIC code has significant organizational

differences from its plasma counterpart. Rather than the classical particles

containing the primary description of the simulation from time step to time

step, it is the quantum wavefunctions, l(x,t) , that contain the most important

information. We borrow the grid-point formalism used for the field solve and

apply it to the definition of the spatial discretization of the quantum

wavefunctions. Therefore, in the code, l(x,t) is represented using a complex

array identical in dimension to the array used for the electric potential.

Before the main time step loop begins, we initialize the code by

allocating all needed arrays and loading the wavefunction arrays with the

desired initial conditions. The initial conditions are a simple matter of

calculating or loading the desired wavefunctions. For example, Listing 1 shows

42

a loop over partition k of wavefunction l that loads each wavefunction in the

array wfcn with Gaussian wavefunctions of standard deviation 4 centered at

positions given by real array initialPosition with average momenta given

by real array initialMomentum.

 do k=1,nblok
 joff = noff(k) - 2
 do l=1,nspecies
 pkx = twopi*initialMomentum(l)
 do j=1,nxpmx
 wfcn(j,l,k) = exp(-0.25/(4**2)*(j + joff - &
 & initialPosition(l))**2) * &
 & cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
 enddo
 enddo
 enddo

Listing 1: A Fortran code example loading the wavefunctions with
Gaussians.

where noff(k) contains the coordinate of the first grid point of cell k, twopi is

2π, nspecies is the number of quantum wavefunctions, and nxpmx is the

number of grid points per cell. The structure of the nested loops is consistent

with the partitioning method expressed in a work by Decyk. 34

We show a simplified flow chart for the quantum PIC code in Figure 6

and subsequently describe each major section of the code.

43

Figure 6. Simplified flow chart for the quantum PIC code

• Charge Deposit

We begin with the charge deposit. The plasma code’s original depositor

is inappropriate here, but the replacement is much simpler. The charge that

quantum particle l encounters is computed by:

l (x) = ql' | l' (x) |2

l'≠ l
∑ (57)

where ql is the charge for particle l (e.g., for electrons, ql = −e). This particle

sees the total charge density minus the charge due to itself, which prevents self-

interaction. Since at a grid point contributes to charge at the same grid point,

44

this step is very easy to implement and poses no problems for parallelism. A

code example is in Listing 2.

 do k = 1, nblok
 do j = 1, nxpmx
 do l=1,nspecies
! initialize charge density to zero
 q(j,l,k) = 0.0
 enddo
 enddo
 enddo
! deposit charge using qme |wfcn|^2 leaving out self-
interaction
 do 1190 k = 1, nblok
! only where we need to
 do 1180 j = 1, nxp(k)
 do l=1,nspecies
 qiw = qme*(real(wfcn(j+1,l,k))**2 +
aimag(wfcn(j+1,l,k))**2)
 do lt=1,nspecies
 if (l.ne.lt) then
 q(j+1,lt,k) = q(j+1,lt,k) + qiw
 end if
 enddo
 enddo
 1180 continue
 1190 continue

Listing 2. Charge depositor for wavefunctions.

q is the charge density array, partitioned across processors, to be used in the

field solve.

• Field Solve

Next, we use the same field solve routines, unchanged from the plasma

PIC code, to provide the electric field and the electric potential. We will need

the field for the classical path calculation and the potential for the classical action

45

calculation. Note that, for N quantum wavefunctions, N different charge

densities will be produced, so N field solves are necessary in one quantum time

step. A natural solution is to set up a loop over quantum particle inside the

time-step loop.

• External Potential

In addition, we have the option of adding an external potential to the

field and potential arrays. This feature is useful for textbook examples, such as

the simple harmonic oscillator. In one dimension, it is a simple task of

accumulating the calculated potential into the electric potential array and its

negative derivative into the electric field array. This approach allows for time-

dependent external fields as well. These calculations are local, providing for

easy parallelization.

With the wavefunction and field arrays ready, we now proceed to the

procedures that calculate (55). To store information about the virtual classical

particles, we borrow the plasma code’s original particle array and extend it.

Formerly, each entry of this array had information only about position and

velocity. In the quantum PIC code, we must add allocation for the action (1

real), the determinant (2 reals for di and di −1), and the value of the original

wavefunction (1 complex). In the one-dimensional code, this increases the

46

number of real numbers allocated per classical particle from 2 to 7.

• Particle Preparation

The virtual classical particle array is initialized using a new particle

preparation routine. The initial conditions of these virtual classical particles are

determined by the indices of the double sum expressed in (55). The particles’

initial positions are evenly distributed across all grid points of the wavefunction.

Particles beginning at the same grid point have a regular distribution of initial

momenta, bounded by (56). For all particles: the action attribute of the particle

is initialized to zero; the determinant information are initialized according to

d0 ≡ 1 and d−1 ≡ 0 ; (42) & (43)

and the initial wavefunction information is set to the wavefunction evaluated at

the grid point from which the virtual classical particle begins. Note that this

particle initialization uses operations are entirely local (copying wavefunction

data and other initialization) or are very regular (initial positions and velocities),

making this routine simple to parallelize. (This is in contrast to particle

initialization in the plasma code, which must generate a psuedo-random

distribution while guaranteeing no correlations of particle data between

processors. The typical solution is for all processors to generate identical

distributions of the entire plasma and disposing the particles outside of their

assigned cells, providing no parallelism.)

47

• Particle Push

With the virtual classical particles initialized, the code is ready to push

them through space. This involves a modified version of the plasma code’s

particle pusher. Since the classical path specified by (18) is the same provided

by the leap-frog method driven by the force described by the electric field

array, that portion of the routine is unchanged. The pieces we must add are the

action accumulation and the determinant evaluation. The accumulation of the

action is given by (24), which uses the electric potential array and the velocity,

time-centered at half steps, given by the leap-frog method. The evolution of

the determinant is given by (38).

Listing 3 gives a code sample that advances the particle position and

velocity according to the leapfrog method (18) and the classical action (24),

assuming that ax and px are loaded with the electric field and the potential at

the particle’s previous position.

! new velocity
 dx = part(2,j,k) + qtm*ax

! action accumulate
 part(3,j,k) = part(3,j,k) + .5*dt*((dx)**2) - qtm*px
! new velocity
 part(2,j,k) = dx
! new position
 part(1,j,k) = part(1,j,k) + dx*dt

Listing 3. A code listing for one virtual classical particle push.

where dt is the classical time step, qtm is the product of the particle’s charge to

48

mass ratio and dt, and part is the particle array. Then we have the

determinant calculation in Listing 4.

! push det's, using (∂t)^2 V'' / m
! = (dt/vscale)^2 (qtm*(vscale**2)/dt)*pt'' / m
! = pt''*qtm*dt
 px = pt(nn+1,l,k) + pt(nn-1,l,k) - 2.0*pt(nn,l,k)
 ax = part(7,j,k)
 part(7,j,k) = part(6,j,k)
 part(6,j,k) = (2.0 - px*qtm*dt) * part(7,j,k) - ax

Listing 4. Determinant evolution code sample.

where nn is the nearest neighboring grid point to the current position of the

particle. (vscale will be defined in a later section.) px acquires the value of the

second derivative of the potential, which is used to calculate the latest

determinant value in part(6,j,k). Here it is possible to check if the

determinant is going become singular.

• Particle Manager

Since the particles, after one push, could venture outside their initial cell,

the particle manager of the plasma code must be invoked here. Other than the

simple change to allow for more data per particle, it is identical to the plasma

PIC code’s particle manager. Parallelization issues for both the pusher and the

manager are identical to that of the plasma code.

One important conceptual difference we must emphasize here, however,

is that the particle push/particle manager pair is evaluated many times. One

49

push corresponds to one classical time step ∂t , which subdivides the quantum

time step ∆t , as related by (4). The ratio of the quantum time step to the

classical time step is how many times the particle push and particle manager

must be evaluated.

• Wavefunction Reconstruction

Finally, we focus on the wavefunction reconstruction routine. This

routine computes “the deposit of complex charge” due to the virtual classical

particles, which has a vague analogy to the plasma code’s charge depositor,

hence an alternative name of “wavefunction depositor”. This routine is new

and unique to the quantum PIC code.

One way of looking at the implementation of this code is by looking at

(55) the following way:

x f (t + ∆t) = exp(
ix f pcl f

h
) f (x0, p0)

x0

∑
p0

∑ (58)

where

f (x0 , p0) ≡ exp(−

ixcl N
pcl f

h
)

exp iScl h()
h det(M)

x0 (t) ∆x∆p (59)

pclf and f are computed from the particle data calculated by the particle pusher

using (24), (52), (53), and (55). The focus of the problem is on x f . Instead of

50

summing in the order suggested strictly by (58), where one x f is considered,

and all classical particles are summed, instead consider one virtual classical

particle, and distribute its contributions to the final wavefunction as a function

of x f .

Besides computing f only once per virtual classical particle, this

approach allows the following scheme for parallelization. Each processor

allocates a temporary complex array large enough for a complete description of

the wavefunction for all cells. Each processor then accumulates the

contributions from its assigned virtual classical particles into its array according

to (58). These steps so far require no interprocessor communication.

With the wavefunction buffers complete, these arrays then need to be

summed between processors. The temporary array each processor is holding

is partitioned into sections designated for other processors. Each processor

sends to every other processor the data assigned to them, and receives from

every other processor the data it is supposed to accumulate to form its section

of the final wavefunction. After the final sum is finished, the complete final

wavefunction is formed, correctly partitioned between each processor.

Calculating N complex exponentials for N grid points according to (58)

can in general be time-consuming. However, the current version of the code

uses a code optimization that completes the same task using only two complex

exponential calculations instead of N, resulting in an order of magnitude speed-

51

up for the overall subroutine. We know that the values of x f are regularly

spaced according to

x f = x f 0 + j∆x (60)

where ∆x is the grid spacing and j is a nonnegative integer. First, compute the

two complex values

y0 ≡ exp(

ix f 0 pcl f

h
) f (x0, p0) (61)

m ≡ exp(

i∆xpcl f

h
) (62)

which cost two complex exponentials and one complex multiply to produce.

The contribution to the wavefunction at the lowest value of x f is simply y0 . For

the next value of x f , multiply m by y0 . Then for the next, multiply by m again,

and so on for all grid points.

Implementing this technique in code is shown in Listing 5.

 ctemp = wf * &
 & cmplx(cos(phase + pdh * (nnoff + 1)), &
 & sin(phase + pdh * (nnoff + 1)))
 cincr = cmplx(cos(pdh), sin(pdh))

 do jw=1,nxpmx

 wtemp(jw,kw,k) = wtemp(jw,kw,k) + ctemp

 ctemp = ctemp * cincr
 end do

Listing 5. Inner loop for rapid calculation of contributions to all grid points.

pdh is the final momentum divided by h , nnoff+1 is the position of the the

52

first grid point in this cell, wf is the value of f (x0 , p0) given by (59), and wtemp is

the temporary wavefunction array. This listing assumes that the simulation is

organized such that ∆x =1 .

This procedure completes the contribution due to one virtual classical

particle, and we repeat the procedure for all particles. After all the

contributions are summed, the data in the virtual classical particle array may be

discarded, and its allocation may be reused.

• Renormalization and Diagnostics

To preserve the norm of the wavefunction against numerical error, it is a

good idea to renormalize the wavefunction data at this time, maintaining

l l = 1, for all l (63)

With all wavefunctions updated to the new time step, the wavefunction data for

this time step can be saved to a file, and a variety of diagnostics can be

computed. Parallelization issues involve properly summing values across

processors since the wavefunction being diagnosed or renormalized is

distributed. The entire procedure repeats to continue the evolution of the l .

D. Boundary Conditions

An important issue in the simulation is how to correctly contain the

53

quantum wavefunctions if they approach the edges of the simulation. The

most typical confinement appropriate for quantum mechanics is the infinite

square well potential, which implies the boundary condition constraint

l(x) = 0 for x = 0 and x = L (64)

where L is the size of the box.

However, to make this constraint consistent with these semiclassical

methods is an involved question. How should the wavefunction and the virtual

classical particles behave to be consistent with this constraint? A variety of

possibilities exist. For the wavefunction, additional guard cells can be added,

the wavefunction could be extrapolated beyond the boundaries using functions

that preserved continuity and continuity in the higher-order derivatives of the

wavefunction, or the wavefunction could be zeroed beyond the boundary. In

addition, the particles could be made to reflect (reverse momentum) or not, and

their phase (due to the action of their paths) may or may not be adjusted upon

hitting the boundary. Finally, the boundary itself could be redefined at

fractions of a grid spacing. Of course, there are always combinations of the

above.

The answer used in the code was found empirically using eigenstates of

the infinite square well as test cases, to be described in Section D of the

following chapter. We allow two guard grid points for each boundary,

meaning the boundaries are set at grid points at least two grids away from

54

edges of the simulation. The wavefunction is set to zero at the boundary and

outside the well. The virtual classical particles are reflected, their phase receives

no additional adjustment, but their reflection point is one-half grid beyond the

wall, diagramed in Figure 7.

Figure 7. A virtual classical particle reflecting at one-half grid point behind the

l(x = 0) = 0 boundary of the well.

The precise theoretical reasons for this phenomena has not yet been

determined, but the source of empirical support for this conclusion will be

given in the following chapter.

Implementing these adjustments is not difficult. The code to zero the

wavefunction is a simple matter to insert after the virtual particle deposit is

finished in the wavefunction reconstruction routine. The virtual classical

particle reflection is handled in the particle pusher after the leapfrog method

step and before the determinant calculation. The code checks if the new particle

position is beyond the reflection point. If it is, it resets the new position within

55

the boundaries and reverses the velocity.

E. Simulation Parameters

We have emphasized on describing the structure of the code in the

preceding sections, but, in order to make the code a practical tool, a number of

parameters must be set. The choice of parameters reconcile the properties of

the algorithms with the practical realities of the numerics. This section is meant

to describe the reasons for the particular choices made in the code, providing

guidelines for future adjustments or extrapolations.

Since this quantum code is derived from a plasma code, it borrows many

features of the plasma code, sufficiently described in other references. 27-33,57

The partitioning issues regarding the organization of grid points between

processors are identical, and the techniques used to create “portable parallel”

code 34 are carried to any new code unique to the quantum simulation. This

prescription allows the code to compile on a variety of parallel computing

platforms. It is the recommendation of this author that future users should

extend this consistency to any new additions to the code.

Other aspects of the simulation that carry over include the numerical

values of the parameters involved. For example, the units of the code are a

system designed to make the simulation values easier to handle numerically,

56

but based on cgs units. For example, the mass of the electron me and the grid

spacing ∆x are fixed at 1. The electron charge e is a parameter on the order of

unity, and the time step is a parameter less than one, low enough to prevent

the classical particles from stepping over too many grid points in one step and

high enough not to expend excessive amounts of CPU time.

Extending on this scheme to quantum mechanics, parameters regarding

Planck’s constant h , the ratio of the quantum time step to the classical time step

∆t ∂t , and the maximum momentum pmax must be considered in combination

with the size of the discretization of the wavefunction. Given, from the plasma

code, that ∆x and m are 1, (56) implies that h must be twice the value of vmax ,

the maximum velocity of the virtual classical particles.

h , represented in the code with planck, must be chosen to be large

enough for the grid spacing of the wavefunction to provide sufficient resolution

to represent wavefunctions of interest to us, yet it should not be so large as to

waste inordinate amounts of CPU time. 64 was found to be a sufficient value

for planck, although we suspect 32 could function as well.

planck = 64 implies vmax = 32 , however there is more than one way to

implement this vmax . The method chosen here, primarily for diagnostic

purposes, allows flexibility through a number of adjustable parameters. In the

plasma code, vts is interpreted as the thermal velocity of the plasma and is set

to no higher than 1 so that, in combination with dt, the classical particles do not

57

traverse too many grid points too quickly.

We wish to preserve this condition and ease debugging; thus, we leave

the form of the particle pusher code unchanged. Therefore, the output of the

particle pusher must be reinterpreted with a rescaling of its units. A parameter,

called vscale in the code, was created to describe the ratio of time scales

outside the particle pusher to the time scale inside. This allows the velocity

values seen inside the pusher to actually correspond to considerably higher

velocities desired outside the routine. The velocities inside must be multiplied

by vscale before being used with values in the rest of the code. Since action is

also proportional to the inverse of the unit of time, action determined by the

pusher must also be multiplied by vscale. Therefore vscale*vts is

interpreted as vmax . Since vts is 1 and planck is 64, vscale becomes 32 for to

satisfy all of the above conditions.

But, not only does this describe the ratio of interpreted velocities inside

and outside the pusher, this scenario sets the ratio of the quantum and classical

time scales in the code. tcptq (short for “number of Timesteps Classical Per

Timesteps Quantum”), which represents ∆t ∂t , sets how many times the

particle pusher is called per quantum time step. Since each dt inside the pusher

is really ∂t outside the routine, tcptq must also be equal to vscale. It has also

been found empirically that vscale = tcptq = 32 provides a simulation

consistent with physics, given planck = 64 and vts = 1.

58

We ask that the reader bears in mind that this structure is in the code not

simply to be confusing. The extra parameters exist because they provided a

means to test ideas and alternative schemes until one that worked correctly was

found. Further tests on this aspect of the method may become important in the

future. However, for those who simply wish to adjust the code for other

purposes, we recommend that the user only adjusts tcptq and leave rest of the

code to set vts = 1, planck = 2 * vscale, and vscale = tcptq.

The last note of empirical knowledge regarding the parameters of the

code regards the number of virtual classical particles per quantum particle. The

quantum code reinterprets the nspecies parameter, which meant the number

of different plasma species in the plasma code, instead as the number of

different quantum particles. This reinterpretation allows us to use many of the

existing mechanisms in the plasma code for organizing particles by species to

organize them by quantum particle instead. So, formerly the number of

particles per species, npx is the parameter used to describe the number of

virtual classical particles per quantum particle.

Since these virtual classical particles must start from individual grid

points of the initial wavefunction, for a complete and regular sampling, it seems

reasonable to say that npx should be proportional to the number of grid points,

nx. So the question becomes what is the number of particles per grid point,

npx/nx? Since the Fourier transform of a function on nx grid points also has a

59

resolution consisting of nx grid points, one plausible answer is nx. So npx =

nx*nx. This hypothesis is borne out by empirical tests: setting npx to be at

least this value provides consistent physics, while setting npx below this value

causes the wavefunction to shred itself into noise in a few time steps.

However, this is not to say that other solutions are impossible. This

simple method of sampling is one that blankets phase space with a density of

classical paths sufficient to provide correct results. But it is the belief of this

author that there exist solutions that are more clever, some of which will be

suggested in Chapter VII - Future Work.

F. Alternative implementations

In the course of developing the theory and the code for this project, a

variety of other schemes for almost all aspects of the calculation were also

conceived. Those that were attempted are described in Appendix A, some of

which may be useful or more appropriate for applications other than those

shown in this dissertation. Those that have been speculated upon are described

in Chapter VII - Future Work.

60

IV. Validation

A. Output

After each quantum time step, the quantum PIC code saves data into a

variety of files. It runs a series of diagnostics on the wavefunctions, measuring

potential energy, kinetic energy, total energy, average position, l l ,

average momentum, electrostatic energy, and the range of the determinant. In

addition, it saves all quantum wavefunctions at all time steps. Besides making it

possible to restart the simulation from any point, this quantum data file enables

the user to examine the entire time sequence of the simulation for any purpose.

In the early stages of development of this code, these data sets were

studied to test the correctness of the simulation. A feedback process was

developed to thoroughly test the code against solutions to typical quantum-

mechanical problems. Specific well-known phenomena unique to quantum

61

mechanics were used to probe for possible problems in specific parts of the

code. This process was an effort to be sure that the code was as faithful as

possible to the physics. The test cases used and their results are described in

this chapter. These processes are demonstrated here to provide a guide for

future work with this code or future extensions on or extrapolations of this

code.

B. Free-Space Gaussian

The first test case studied is the evolution of a single Gaussian in free

space. This calculation is a rigorous test of the code because it precisely tests

some of the most basic behavior found in quantum mechanics. The initial

conditions inserted into the code represented a Gaussian of known standard

deviation , initial position x0 , and initial momentum p0 of the form

(x,t = 0) =

1

2π
exp −

(x − x0)2

4 2

 exp i

p0 x

h

 (65)

The space of the code was sufficient in size to allow numerous significant

properties of the wavefunction’s evolution to be measured before it began to

interact with the edges of the simulation in any measurable way. The Gaussian

was centered in the space of the simulation, the external potential routine was

shut off, and the initial momentum and the charge were set to zero.

62

 For any observable ˆ A , the expectation value of ˆ A of a wavefunction

is calculated using

ˆ A = *(x) ˆ A (x)dx∫ (66)

The energy of the wavefunction is measured using the expectation value of the

Hamiltonian ˆ H

ˆ H = *(x) −

h
2m

∂2

∂x2 + V(x)

 (x)dx∫ (67)

and the standard deviation using

∆x()2 = ˆ x 2 − ˆ x
2

(68)

The standard deviation in space of a wavefunction which begins according to

(65) will increase as a function of time according to

∆x()2 = 2 1 +

h2t2

4m 2 4

 (69)

while its total energy remains constant. Frames from the successful modeling

of the evolution of this wavefunction are shown in Figure 8.

63

Figure 8. Four frames of the evolution of a stationary Gaussian in free space.

The representation of the wavefunction in Figure 8 is the following. The

horizontal axis of all graphs is space. Color indicates the phase of the

wavefunction, where cyan is positive real, purple is positive imaginary, red is

negative real, and so on around the color wheel. The legend for the phase-

color mapping is shown using the color wheel in the frames, assuming a set of

real and imaginary axes superimposed on the wheel. This mapping will be

used for all further plots of phase. The top bar shows the wavefunction’s phase

as color and probability density, (x)
2
, as the strength of that color. The

middle tick mark is the average position of the wavefunction ˆ x , and the two

64

other tick marks are ˆ x −∆ x and ˆ x +∆ x , as defined by (66) and (68). The

vertical axis of the middle graph is (x)
2
 while color is used for phase, and the

lowest graph shows the real and imaginary parts of (x) plotted

simultaneously.

The earliest versions of the quantum PIC code presented significant

problems. After locating a working range of algorithmic configurations and

parameters and debugging the parallel aspects of the new code, the largest of

the remaining problems was that the energy of the wavefunction decreased on

the order of 1% per time step. The first clues towards the cause of this energy

loss was through a careful analysis of the data, including a translation of the

wavefunction data into audible sound. A code was developed to translate a

data set of floating-point numbers into a format that computer hardware could

transform into current impulses delivered to a pair of speakers. At one time

step, the real part of the wavefunction was used to supply sound to the left

channel, and the imaginary part for the right channel. The speakers play the

data in a loop fast enough for the frequency range of the wavefunction to be

heard in the audible frequency range. By playing the data at successive time

steps, the change in the data, as the wavefunction evolves, can be heard.

What was observed in the data using this technique was that the

frequency distribution of the wavefunction was changing from the beginning

65

of the simulation to the end. In particular it was noted that the higher

frequencies, which correspond to the higher momentum components of the

wavefunction, were being attenuated as the wavefunction evolved. If the

higher momentum components of the wavefunction were decreasing in

strength relative to the lower momentum components, that could be enough to

explain the energy loss.

Assuming that this higher momentum attenuation was how the energy

was being lost guided us to focus on particular parts of the code. This clue led

us to the technique used in the wavefunction reconstruction routine to

“deposit” the virtual classical particles’ contributions onto the grid. At the time,

the technique used was a deposit local to the virtual classical particle’s final

position, very similar to the charge deposit of the plasma code. By analyzing

the effect of the deposit as a convolution of the “ideal” wavefunction with a

weight function that describes the deposit technique, it was found that the

consequence of using this deposit technique could explain both the rate of the

energy loss and the high-frequency attenuation heard earlier.

A number of techniques (described in greater detail in Appendix B) were

used to attempt to decrease that energy loss, but the solution found to preserve

the energy best (that is, with variations that are indistinguishable from round-

off error) primarily involved substantial changes in the wavefunction

reconstruction routine. Chapters II and III presents the solution that worked

66

best. This solution produces a wavefunction whose measured width matches

(69) as a function of time with variations indistinguishable from round-off error

due to the single-precision floating-point variables used. In addition, when the

initial momentum is nonzero, the simulation shows a constant translation of the

Gaussian between frames consistent with theory.

C. Simple Harmonic Oscillator

The next problem type investigated is the simple harmonic oscillator

(SHO) problem. This calculation is among the simplest that requires the

quantum particle to interact with its environment and has a behavior that is

very well known and easy to recognize. The implementation requires the same

conditions and as the free space Gaussian with the addition of an external

potential of the form

VSHO (x) =
1

2
m 2 x2 (70)

In the code this potential is implemented as shown in Listing 6. Note that both

the potential and its negative derivative must be introduced into the electric

potential and field arrays. omegasq represents 2 .

 real :: omegasq
 parameter(omegasq = (1.0/8.0)**2)

. . .

67

 do k=1,nblok
 joff = noff(k) - 2
 do j=1,nxpmx

! ! Simple Harmonic Oscillator
 xt = j + joff - nx/2
 pt(j,l,k) = pt(j,l,k) + &
 & adjustment*0.5*omegasq*(xt**2)
 fx(j,l,k) = fx(j,l,k) - &
 & adjustment*omegasq*xt

 enddo
 enddo

Listing 6. Code that introduces a simple harmonic oscillator potential into

the electric potential and force arrays.

As demonstrated in Listing 6, the effect of the external potential must be

introduced into both arrays consistently. The adjustment multiplier is needed

because of the unusual units pt and fx have due to their history as part of a

plasma code. xt provides the coordinate for the potential while accounting for

the partitioning due to the PIC techniques.

The initial conditions for the first test was an arbitrary Gaussian to see if

omegasq was compatible with the simulation. Once an appropriate value of

omegasq was selected, a Gaussian corresponding to the ground state of the

SHO was used. Frames of this simulation are shown in Figure 9.

68

Figure 9. Four frames of the evolution of the ground state of the simple

harmonic oscillator.

We were expecting that the simulation would be consistent with the

analytical behavior of the ground state, n = 0 . In particular, the state should

remain as it is with the exception of an evolution in its overall phase. As

indicated in Figure 9, the quantum PIC code gave the correct results, and easily

maintained the eigenfunctions for hundreds of time steps.

Next, we attempted other SHO eigenstates with higher energy. In

particular, we supplied the code eigenstates with quantum numbers n=1, n=5,

and n=7. Examples of their structure are shown in Figure 10.

69

Figure 10. Frames from simulations of the n =1 , n = 5 , and n = 7 eigenstates

of the simple harmonic oscillator.

What was also seen in the evolution of these eigenstates was that the

rate of the evolution of their phase was distinct from each other and in a

manner consistent with quantum mechanics, in particular, according to their

energy eigenvalues. 54 This is a property that is possible to exploit using a

correlation calculation,

c() ≡ (t +) (t) dt∫ (71)

or, in the position representation,

70

c() = *(x,t +) (x,t) dxdt∫∫ (72)

The Fourier transform of the correlation c should show the energy spectra of

the system, presenting peaks that correspond to the energy eigenvalues of the

eigenstates in the system. Inserting the data from the SHO eigenstate tests each

showed one solitary peak, and each peak’s frequency corresponding to the

energy of the state, as we were expecting.

The next question is: can the code handle multiple eigenstates at once

and preserve them independently of each other? To answer this question, a

superposition of these eigenstates was used for the initial conditions, evolving

as seen in Figure 11.

71

Figure 11. Three frames from the evolution of an arbitrarily chosen

superposition of the n = 0 , n =1 , n = 5 , and n = 7 eigenstates of the simple

harmonic oscillator.

The resulting energy spectrum is shown in Figure 12.

72

Figure 12. Energy spectrum of the simulation shown in Figure 11.

The energy spectrum clearly shows four peaks, at relative energies that one

would expect, based on the theory, for the superposition the code was given.

The reader may recall that this simulation is supported only by a

network of classically calculated paths, whose contributions are regularly

recoalesced using a process that relies heavily on cancellations due to phase.

Before running these simulations, it was conceivable that superpositions might

not be successfully maintained because of noise, errors, or crossover between

modes of the system. Instead, these results show that the quantum PIC code

can maintain a simulation of an arbitrary superposition of eigenstates, and with

enough fidelity for the energy spectrum of the system to be extracted from a

simulation of sufficient length.

73

D. Infinite Square Well

The next system of interest is the infinite square well. This system is

important because of its primary features: its well-defined and simple boundary

conditions:

l(x) = 0 for x ≤ 0 and x ≥ L (64)

while the wavefunction is unconstrained between these boundaries. This type

of constraint is one of the most conceptually convenient ways to precisely

define a method to “contain” a collection of particles.

However, the methods to achieve this particular containment and

demonstrate this achievement in this quantum PIC code are not immediately

clear. A discussion of the possible combinations to attain this containment and

a presentation of the final solution is given in Section D of Chapter III. We now

discuss the test cases used to determine which of those combinations gives the

most accurate simulation.

The first test case that revealed a problem with the implementation of

the boundary condition was a Gaussian, of the form in (65), with a significant

nonzero initial momentum inside the infinite square well. Figure 13 shows the

progression of a successful bounce.

74

Figure 13. A moving Gaussian bouncing off a wall of the infinite square well.

Theoretically, the wavefunction should encounter the wall of the well, then

bounce back without losing energy. The initial simulations showed a

preservation of total energy until the time step that the probability density of

the wavefunction at the wall became significant, after which the wavefunction

suffered a measurable energy loss. Since the energy loss only began when the

wavefunction “touched” the wall, this evidence strongly suggested that

incorrectly defined boundary conditions caused the loss.

More tests were run using other combinations of boundary condition

75

parameters while bouncing the Gaussian off the wall. The prescription of this

test relied on observing a decrease in the energy diagnostic after the bounce.

While this method did rule out combinations that resulted in gross losses, it

could not distinguish among the combinations that were “close” to being

correct. It was realized that the energy diagnostic itself is also not clearly

defined at the boundary for some of the same reasons this investigation was

underway. So it became clear that this test was not sufficient, and a new

method of testing had to be found.

Utilizing the eigenstates of the infinite square well became the next

choice to rigorously test the boundary condition methods. The behavior of

these eigenstates relies on the properties of both boundaries simultaneously, so

any “bleeding” of energy due to the boundaries should be clearly evident. If

we can gain confidence in an accurate simulation of these eigenstates, then it

seems plausible, given the behavior seen in the SHO case, that any

superposition of these eigenstates will also be correct.

The properties of these eigenstates are fairly straightforward. The

eigenstates are described by

n (x) =
2

L
sin

nπx

L

 (73)

where n is the quantum number of the eigenstate, a positive integer, and L is

the width of the well. As in the SHO, an eigenstate’s phase will evolve at a

76

particular frequency proportional to the energy eigenvalue of the state, which

takes the value

En =
h2n2

8mL2 , (74)

and, obviously, remains constant throughout the existence of the state.

Early tests easily showed how incorrect boundary conditions presented

problems maintaining the eigenstate. Most of the incorrect possibilities

introduced kinks at both edges of the wavefunction that propagated inwards.

The kinks would increase in strength and in number, eventually dominating

over the wavefunction entirely. Eigenstates with n=1 through n=11 were used,

and this behavior was seen in all such cases. These tests eliminated the

wavefunction extrapolation and virtual classical particle phase adjustment

candidates discussed in Section D of Chapter III. It was found that modest

guard cells in which the wavefunction was zeroed were needed, and the virtual

classical particles were indeed reflected (without which the wavefunction simply

disappears). Some of these eigenstates are shown in Figure 14.

77

Figure 14. Example eigenstates of the infinite square well. Frames from the

n=1, n=2, n=7, and n=11 cases are shown.

Upon establishing the grids where the wavefunction is to be zeroed, that

defined the walls of the well and, consequently, the width L of the well. The

next question is: where should the virtual classical particle be reflected? Our

first hypothesis was at the walls, in particular, the grid points where the

wavefunction becomes zero. This hypothesis was attempted, and qualitative

properties, such as their long-term stability and evidence of phase evolution, of

the eigenstates were preserved.

However, upon close inspection of the precise rate of its phase evolution,

78

it became clear that the eigenstate was not behaving as if the well was of width

L but, instead, of width L −1 . The precise positions of boundaries and particle

reflections were carefully rechecked, and the result was confirmed.

Other experiments were attempted. When the left (x = 0 boundary)

particle reflection was displaced left by one, the eigenstate behaved as if the

well expanded by one. Likewise, when the right (x = L boundary) particle

reflection was pushed right by one, the eigenstate behaved as if the well

expanded by one. Finally, when the reflection points were each placed one-half

grid point beyond their respective wall, the eigenstates behaved as if they were

in a well of width L , making this measurement consistent with the positions of

the explicitly zeroed wavefunction.

This behavior was independent of all other computational aspects of the

code. It was consistent in all observed eigenstates and was seen when the

number of grid points in the simulation was adjusted arbitrarily. It seemed

that, when the reflection points are close to the edge of the wavefunction

zeroing, the precise behavior of the wavefunction are more dependent on the

reflection points rather than the zeroed edge of the wavefunction. In addition,

this dependence shows the state responding to a wall one-half grid point closer

than the reflection point. While this empirical result was a surprise to us, this

combination of parameters also allowed the Gaussian to bounce off the wall

without a measurable loss of energy.

79

Besides determining the boundary conditions necessary to maintain a

state in an infinite square well, this investigation shows how precisely

properties of the quantum system can be measured. The numerical values of L

in this investigation were 112, 120, 124, 248, and 252. By observing the

frequency of the eigenstate oscillation, it was possible to distinguish between a

well of width 252 versus a well of width 251, or 251.5, while varying a range of

other independent parameters. Such precise determinations should provide

support for this code’s utility and robustness.

E. Barriers

Other attempts at duplication of well-known quantum problems were

made. The finite square well, and a variety of quantum barrier problems were

attempted. For example, the square barrier potential,

Vsquarebarrier(x) ≡
V0, if 0 < x < w

0, elsewhere

, (75)

was implemented as shown in Listing 7.

 parameter(width = 4, height = 16.0)

. . .

 do k=1,nblok
 joff = noff(k) - 2
 do j=1,nxpmx

80

! ! Rectangular barrier or well
 xt = (j + joff - nx/2)
 if (abs(xt).le.width) then
 if (abs(xt).gt.(width-2)) then
 if (xt.lt.0) then
 pt(j,l,k) = pt(j,l,k) + &
 & adjustment*height*0.5*(xt+width)

 fx(j,l,k) = fx(j,l,k) -
adjustment*height*0.5

 else
 pt(j,l,k) = pt(j,l,k) + &
 & adjustment*height*(width-xt)

 fx(j,l,k) = fx(j,l,k) +
adjustment*height*0.5

 end if
 else
 pt(j,l,k) = pt(j,l,k) + adjustment*height
 end if
 end if

 end do
 end do

Listing 7. Code sample implementing a (nearly) rectangular well.

Because a value of the derivative of the potential is required to make the force

array consistent with the potential array, the code cannot handle a potential

with sharp discontinuities. Consequently, this code implements a barrier

potential with very steep edges.

nx, the width of the simulation, is used to center the barrier.

The problem with implementing this barrier is that this potential

possesses sharp boundaries. Such properties contradict a basic assumption of

the code that the grid points are sufficiently fine to resolve all features of

interest as continuous functions. Consequently it was little surprise that

quantitative measurements (specifically, transmission and reflection

81

coefficients) on simulations resulting from using this potential did not precisely

match theory, but much of the qualitative features were clearly evident. A

demonstration of quantum tunneling, with partial transmission and reflection,

is shown in Figure 15.

Figure 15. Evolution of a Gaussian wavefunction colliding with a square barrier

eight grids wide in the center (not drawn). The energy of the Gaussian is just

enough for a significant amount of transmission and reflection, seen in the last

82

frame.

It may be possible to implement the ideal rectangular potential by customizing

elements of the particle pusher in a fashion similar to the boundary condition

implementation used for infinite square well. These possibilities will be

discussed in Chapter VII - Future Work.

F. Fermion Statistics

Throughout the process of building the code, the routines, arrays, and

loops were designed to handle multiple interacting particles. Mixed with the

above tests were ones involving up to sixteen particles, but the earliest

experiments of significance on more than one quantum particle involved

quantum particle statistics. The particular category of quantum statistics that

we wanted to address first was the statistics of fermions since we ultimately

wish to apply this code to modeling electrons, categorized as fermions. The

“holy grail” would be to model the full multiparticle wavefunction, however,

the memory requirements to store, in the position representation, such a

wavefunction scales exponentially as a function of the number of quantum

particles. The memory available in today’s largest computers would limit the

model to a half-dozen quantum particles.

Therefore, it is in our interests to determine if there exist alternative

83

means of modeling fermionic behavior and the extent of their validity. We use

the following approach. During the simulation, we model the quantum

wavefunctions assuming they are representable as in (54). Interactions use a

“mean-field approximation”. As a post-processing step, we build the

antisymmetrized multiparticle wavefunction using the data set generated by

the simulation. The first case we will present involves two electrons, so their

antisymmetrized wavefunction would be

12 (x1, x2,t) = 1(x1,t) 2 (x2,t) − 2 (x1,t) 1(x2,t)()N12(t) (76)

where N12(t) is a normalization factor such that 12 (t) 12(t) =1 , for all t .

Diagnostics and tests of interest would then be performed on 12 . For

example, the correlation calculation would be

c() = 12(t +) 12(t) dt∫ (77)

or, in the position representation,

c() = 12 *(x1, x2 ,t +) 12(x1,x2,t) dx1dx2dt∫∫∫ (78)

As before, the Fourier transform of c should give the energy spectrum of 12 .

The first system studied using this approach was two fermions in an

infinite square well. Their electrostatic interactions were turned off so we could

focus on behavior involving the statistics of the system. A fundamental aspect

of their behavior we wanted to observe was the Pauli Exclusion Principle,

84

where no two fermions in a given system had the same quantum number.

Two sets of initial conditions were used. The first loaded the

wavefunction arrays each with an arbitrary superposition of the five lowest

eigenstates of the infinite square well. The phases of the coefficients of the

eigenstates were different for each particle. The second initial conditions

represented a pair of arbitrarily-chosen, low-energy Gaussians, beginning in

different parts of the well with opposite initial momenta. While designed to

resonate the lowest energy eigenstates, these Gaussians were an arbitrary

choice indeed. Frames from these simulations are shown in Figure 16.

Figure 16. A pair of frames each from a pair of wavefunctions in an infinite

85

square well. The left frames are a run using a superposition of eigenstates,

while the right frames are from a run using arbitrarily chosen Gaussians.

A new code was constructed to calculate 12 and its energy spectrum

from the 1 (x1,t) and 2 (x2 ,t) data generated by the quantum PIC code. It was

found that the most efficient manner to calculate the Fourier transform of c

was to reinterpret (78) as a convolution in time. Applying the convolution

theorem to (78) yields

˜ c () = ˜
12 *(x1, x2 ,) ˜

12(x1, x2 ,) dx1dx2∫∫ (79)

where ˜ c and ˜
12 are the Fourier transforms in time of c and 12 , respectively.

With regards to computation, this form suggests that a Fourier transform in

time, rather than many integrals in time (suggested by (78)), should be

performed on 12 first, then the integrals over space are performed. Using the

FFT reduces the computation time from O(N2) to O(N lg N), where N is the

number of time steps.

The correlation code was carefully designed to efficiently handle this

non-trivial problem. The runs described here are 128 grid points wide and over

65536 time steps in length. While the output of the quantum PIC code was 128

MB in size, the resulting data set representing the complete time sequence of

12 in double-precision was 16 GB in size. 16384 FFT calls on this data set were

needed. This correlation code was designed to efficiently utilize processors in

86

parallel. Initialization involved distributing the 128 MB data file across the

processors. Given a particular value of x2 , the processors generated a double-

precision form of one slice, identified by x2 , of 12 at a time. 12 was calculated

for all t in each processor while partitioned along x1 between processors. The

FFTs in t were performed, then the integral along x1 in each processor was

calculated and accumulated for each frequency, after which the code directed

the processors to move on to the next value of x2 . Once the accumulation

finished for all x2 , the correlation data as a function of frequency was

accumulated between processors, the final data set was saved to disk, and the

code ended.

The energy spectrum of one particle eigenstate in the infinite square well

is given by (74). Therefore, the frequency of oscillation for an eigenstate in this

two particle system is given by

n,m =
h2

8mL2 n2 + m2() (80)

where n and m are the two integer quantum numbers of the two-particle state.

We would expect to find peaks consistent with (80), however, if this system

obeys the Pauli Exclusion Principle, we should see none where n and m are

equal.

The energy spectrum resulting from the five eigenstate case is shown in

Figure 17.

87

Figure 17. Energy spectrum from the evolution of a fermion pair initialized

using the five lowest energy eigenstates of the infinite square well. The

frequencies marked in red are those disallowed by the Pauli Exclusion Principle.

The blue graph is the energy spectrum. The base of the lowest peak shows

spurious noise because it is very strong and has finite width.

We find four points of good news. First, we do see peaks, which means

that a discrete finite energy spectrum is evident in the system, which is plausible

given that these effects are supposed to be quantum. Second, we see that the

peaks are well aligned and consistent with the frequencies predicted by (80),

which are marked with black lines. Third, the peaks we do see are at

frequencies we would expect, that is, where the quantum numbers are different

88

(e.g., (1,3), (2,4), (1,5), and (3,5)) and in the range we would expect (between

states 1 and 5, inclusive). Fourth, we do not see peaks where we do not expect

them, in particular, where the quantum numbers are the same ((1,1), (2,2), (3,3),

and (4,4), marked in red. Note that (5,5) is degenerate with (1,7).). This finding

is important because this absence is consistent with the Pauli Exclusion Principle,

which was a phenomena that we intended to duplicate.

We come to the, not bad, but unexpected news. There are some peaks

that we were hoping to see (such as (1,2)), but did not. This could be explained

because the choice of the coefficients was arbitrary, so it was not clear that such

states would appear. In addition, the spectrum shows particular peaks ((2,6),

(1,7), (4,6), (3,7)) that are unexpected. While allowed by the Pauli Exclusion

Principle, these frequencies are not directly explained by the eigenstates input

into the code. Their presence may be explained by small differences between

the “ideal” set of the eigenstates and the actual numerical, discretized

wavefunction loaded as initial conditions into the wavefunction arrays. They

could also be noise or numerical error developed as the wavefunction evolved.

In either case, their magnitude is quite small compared to the primary peaks at

the expected frequencies.

Figure 18 shows the energy spectrum resulting from using a pair of

arbitrarily selected Gaussians as initial conditions.

89

Figure 18. Energy spectrum from the evolution of a fermion pair initialized

using arbitrarily chosen Gaussians.

The good news is, again, we find plenty of peaks where they should be,

and find no peaks where the should not be (where n = m). We also observe

much higher energy states ((5,7), (3,9)), than we saw in the previous spectrum.

Although not identical, we observe much of the same energy structure using

these initial conditions as we did using much more carefully chosen initial

conditions.

The results seen in this chapter provide support for the utility of these

codes. The observation using the arbitrarily chosen Gaussians is significant

90

because it tells us that it is not necessary to know the spatial or energetic

structure of a system a priori in order to use these modeling and analysis

techniques to extract useful information (such as eigenfrequencies) about the

system. Inputting low-energy Gaussians is sufficient to excite the lower,

although not necessarily the lowest, energy eigenstates of the system.

Experimentation given such a system becomes a simple procedure of choosing

modestly judicious initial conditions and running the codes. The level of

flexibility of the code makes the above possible. And, as we can see in the

energy spectra, the noise in the data is very small, while the strength and clarity

of the peaks are very significant. These characteristics indicate the high quality

of the simulation and analysis. The high flexibility and high quality of the

code’s simulations have significant utility when we wish to better understand

quantum systems we encounter, especially those about which we know little.

91

V. The One-Dimensional Atom

A. The Problem

Our next system of interest is the one-dimensional atom. We define the

one-dimensional atom as a number of fermionic electrons bound to a nucleus

with a charge equal in strength yet opposite to that of the sum of the electrons’

charge. The spatial dependence of the nuclear charge is defined by

Vnucleus(x) ≡ x (81)

This problem was chosen for because it is analytically difficult while being

compatible with the quantum PIC code, and it features many of the technical

challenges that this code is intended to address. In addition, it allows us to

investigate behavior known to occur in its three-dimensional counterpart.

92

B. The One-Electron Case

We attempted a theoretical analysis of one electron in a one-dimensional

atom to estimate the energy of the ground state. We first used a Bohr-

Sommerfield quantization (“p dq”) method to estimate the ground state

energy, but the lowest result found was derived using a variational approach

with a Gaussian wavefunction of the form described by (65)

(x,t = 0) =

1

2π
exp −

(x − x0)2

4 2

 exp i

p0 x

h

 (65)

with p0 set to zero and x0 centered on the nucleus. Evaluating the energy of

this wavefunction with the potential described by (81), then finding the

minimum of the energy as a function of , gave the following estimate for the

ground state energy

E0 ≈

3

2

2h2

2πm
3 (82)

Implementing the one-dimensional atom potential in the code was

straightforward. The external potential described by (81) was implemented

using a loop in the external potential routine shown in Listing 8.

 real :: slope
 parameter(slope = 1.0/4.0)

. . .

93

 do k=1,nblok
 joff = noff(k) - 2
 do j=1,nxpmx

! ! 1-D atom potentials
 xt = j + joff - nx/2
 if (xt.lt.0) then
 pt(j,l,k) = pt(j,l,k) - adjustment*slope*(xt)
 fx(j,l,k) = fx(j,l,k) + adjustment*slope
 else if (xt.gt.0) then
 pt(j,l,k) = pt(j,l,k) + adjustment*slope*(xt)
 fx(j,l,k) = fx(j,l,k) - adjustment*slope
 end if

 enddo
 enddo

Listing 8. Code listing that implements the one-dimensional atom

potential. xt is the position relative to the center of the potential.

Setting the potential’s slope to 1/4 was found to provide stable simulations

while providing adequate confinement for systems that we found interesting

and fit within a 128 grid point space. A variety of initial conditions based on

(65) were attempted for these early experiments. Naturally, the electron charge

was set to match the magnitude of the charge implied by slope.

The initial conditions that were attempted involved a Gaussian of the

form of (65) with zero initial momentum, a standard deviation given by the

calculation leading to (81), and x0 offset from the center of the potential. The

offset was provided to excite the higher states in addition to the ground state.

Frames from this simulation are shown in Figure 19.

94

Figure 19. Frames from the evolution of an electron bound to a one-

dimensional atom.

The result of performing a correlation calculation, as described in Section C of

Chapter IV, on this simulation is shown in Figure 20.

95

Figure 20. Energy spectrum of a simulation shown in Figure 19. The horizontal

axis is mode number, which is proportional to the frequency of oscillation of an

eigenstate of the system. This spectrum was derived from 8192 time steps of

the simulation.

The ground state frequency seen in the simulation was very close to that

predicted by (82). The frequency corresponding to (82) translates to mode

number 38.8 in the graph of Figure 20. Interpolated between points, the lowest

mode is observed to be at 38.55, just under the prediction using (82). Excited

modes seen are estimated to be at 88.55, 123.15, 154.85, 182.55, and 209.35.

Analyzing simulations using alternative initial conditions also show excited

states at these mode frequencies.

The discrepancy between (82) and the observed ground state energy is

very plausible. (82) was an estimate based on a variational method, and would

96

provide an upper bounds to the ground state energy, while the actual ground

state energy can be even lower. The simulation’s prediction, being close to the

analytical prediction but lower, is consistent with the analysis. The closeness of

these results lends support to the correctness of the code. The code is also able

to easily show other energy eigenvalues, showing quantitative measurements

of the one-dimensional atom’s energy structure using very little analytical

work. The computational requirements for this simulation are very modest: a

few hours on a single modern personal computer.

C. The Two-Electron Case

The next case of interest was the two-electron one-dimensional atom.

We are guided by the methods explored involving the two fermion infinite

square well, described in Section F of Chapter IV. We assume that we may

choose the initial conditions to be a subjective estimation of the states we expect

to find, as indicated by the aforementioned investigation. We present our

choice of a pair of Gaussians for the pair of electrons: one is placed in the center

of the well, and the other is offset from the center by approximately four

standard deviations of the Gaussians. The intention is to excite the lowest

modes of the two-electron system. The charge on the electrons is set to half

that of the one-electron case, and they are allowed to interact with each other

97

electrostatically. Frames from their evolution is shown in Figure 21.

Figure 21. Four frames from two-electrons bound to a one-dimensional atom.

In this figure, the two wavefunctions are shown in two color bars at the top and

superimposed in the middle graph. The lowest graphs show the real and

imaginary parts of the second wavefunction. The first wavefunction is begun

centered in the well, and the second is offset. Note how the second

wavefunction oscillates around the first, which is nudged by the second.

After the simulation was complete (taking less than a day on a single

98

processor computer), the data was analyzed as prescribed in Section F of

Chapter IV, in particular computing (76) and (79) as described in that section.

The resulting energy spectrum is shown in Figure 22.

Figure 22. Energy spectrum of the fermionic two-electron simulation shown in

Figure 21. The horizontal axis is mode number, which is proportional to the

frequency of oscillation of an eigenstate of the system. This spectrum was

derived from 8192 time steps of the simulation.

The resulting energy spectrum shows five well-resonated modes and three

additional modes. Note that the energy of the lowest peak has a mode number

that is slightly greater than the sum of the lowest two modes seen in the one-

electron case (138.55 > 38.55 + 88.55). The discrepancy is most likely due to the

mutual electrostatic repulsion of the electrons. This seems plausible as a “(1,2)”

state, and indicates consistency with the Pauli Exclusion Principle. With one run,

99

we are able to clearly observe a portion of the energy structure of a two-

electron fermionic system. Again, at a several hours per simulation run, and

less than an hour for the analysis, the computational demands are modest.

D. Eigenstate Extraction

In the course of writing the correlation code that computes (79), it was

discovered that additional important information about the system can be

generated from the same analysis. A portion of this discussion is similar to one

independently conceived by Neuhauser 58 and Decyk 59 , but the regime of the

application is different. Consider the Fourier transform in time of the

wavefunction

˜ () ≡ (t) exp 2πi t() dt∫ (83)

Applying the convolution theorem to (71) gives

˜ c () ≡ ˜ () ˜ () (84)

˜ c () is simply the inner product of ˜ () with itself, essentially describing

“how much” of the wavefunction is oscillating at a particular frequency .

For the sake of simplicity, consider what happens when (t) is an

energy eigenstate. Suppose (0) is an energy eigenstate en with energy

100

eigenvalue En . Therefore, according to (1),

(t) = exp(−

iEnt

h
) en (85)

Consequently, with (83),

˜ () = (−
En

h
) en (86)

which results, using (84), in a peak in ˜ c at =
En

h
. But (86) also says that ˜ ()

contains a description of the energy eigenstate en at that same frequency.

As an interim step to computing ˜ c () , the correlation code has already

been computing ˜ () in the position basis. We can serendipitously use the

existing structure of this code in the following way. If we save a portion of

˜ () at the right point in the code, we can extract an entire energy eigenfunction

for every energy eigenvalue we identify in ˜ c .

Another conceptual approach to this technique is an analogy to tuning a

radio. Searching through the frequency spectrum is like tuning the radio.

Locating and selecting a peak is like tuning the radio to a particular station,

recognized by its signal strength. The signal is modulated at that frequency,

and the radio is designed to demodulate the signal at its carrier frequency and

provide that station programming. Likewise, the kernel in (83), given the right

frequency, will compensate for the inherent oscillation frequency of the

101

eigenstate, and provide the desired signal.

The correlation code, as described in Section F of Chapter IV, computes

˜ () in slices, so the task became saving the desired slices of the Fourier

transformed data set (32 MB for the one-electron case; 16 GB for the two-

electron 12) that represents ˜ () , and then collating the pieces into a format

convenient to display. The result of the one-electron case at five of the stronger

peaks seen in Figure 20 are shown in Figure 23.

Figure 23. Five energy eigenstates extracted from the one-electron one-

dimensional atom simulation seen in Figure 19. Note similarities of these states

to the n=0, 1, 2, 4, and 7 eigenstates of the simple harmonic oscillator.

Given our experience with the SHO eigenstates, the eigenstates extracted

from the one-electron simulation show spatial structure that we would find

102

plausible for the one-dimensional atom. Since the extraction shows that these

states are those that oscillate with a particular frequency in the time evolution

of a one-electron , we propose that these are the energy eigenstates of the

one-dimensional atom. Their similarity to the SHO eigenstates also gives

confidence in proposing specific quantum numbers to each eigenstate and,

correspondingly, the peaks seen in Figure 20. Simulation runs using variations

on the initial conditions used in this example result in a different distribution of

peaks, allowing us to easily locate and extract other eigenstates that interest us.

The result of the eigenstate extraction on the five lowest peaks, seen in

Figure 22, of the fermionic two-electron one-dimensional atom is shown in

Figure 24. The implementation of this extraction was much more involved than

in the one-electron case and was first tested using the data sets generated for

the infinite square well fermion runs described in Section F of Chapter IV.

103

Figure 24. Five two-electron fermionic eigenstates of the one-dimensional

atom.

This visualization possesses some differences from previous figures, so its

components will be described here. The phase-color convention is as it was

described for Figure 8. The top pictures plot 12 (x1, x2) ‘s phase as color and its

magnitude squared as the strength of that color, with the x1 and x2 plotted

horizontally and vertically. The middle graph plots 12 (x1, x2) for all values of

x2 superimposed, with 12 (x1, x2) ‘s phase as color and its magnitude squared

along the vertical axis, and essentially provides a “side-view” of the top plot.

The lowest plot is the (negative) charge density of 12 (x1, x2) , defined as

(x) ≡ −e 12 (x, x2)
2

dx2∫ (87)

104

Since these plots of ˜
12 (x1, x2,) are the portions of the time evolution of

12 that oscillate with particular and distinct frequencies, we propose that these

plots show the energy eigenstates of 12 in the position representation. The

spatial structure of these wavefunctions are suggestively similar to two-particle

products of the states seen in Figure 23. However, since their energy

eigenvalues were seen not to be a simple sum of the lowest two eigenstates of

the one-electron case, it seems plausible that these wavefunctions are not

identical to simple products of the one-electron eigenstates.

Besides being inherently antisymmetric, these states’ spatial structure

becomes more complex as the energy is increased, lending increased

plausibility for the proposal that they are energy eigenstates. This

phenomenon is well-known in the structure of the three-dimensional atom.

Further, in the eigenstates beyond the ground state, the charge density plots

show peaks increasing with energy and flanking the central charge

concentration. These extra peaks could provide a charge shielding effect, a

phenomenon also known in the three-dimensional atom as “shell structure”.

So we also propose that these flanking peaks in the one-dimensional atom also

show shell structure.

105

E. Conclusion

Using an arbitrary set of initial conditions, a great deal of the physics of

the fermionic two-electron one-dimensional atom was determined. The

simulation and analysis provided a prediction for a portion of the energy

structure of this system, and, at the same time, provided detailed information

on the spatial structure of the eigenstates that correspond to that energy

spectrum. By choosing more energetic initial conditions, it is a easy matter to

excite higher states of the system and determine the higher energy eigenvalues

and eigenfunctions. The signal-to-noise ratio in both the energy eigenvalue and

eigenstate data is also very strong, demonstrating the robustness, stability, and

reliability of the code. The investigation also led to support for a hypothesis for

shell structure in the one-dimensional atom, which had not before been

observed. These findings show the applicability of code to obtaining results

about arbitrary quantum systems.

106

VI. Energy Fluctuations in a Plasma

A. The Problem

This next problem has called for the largest simulations yet run using the

quantum PIC code. Credit regarding computational resources goes to Jose

Louis Hales-Garcia and Jan de Leeuw of the Department of Statistics at the

University of California, Los Angeles, for their permission and generous

contributions of computational time and assistance in using their 16 node

Power Macintosh G4/400 cluster. 60 Several computational runs, taking up to

two weeks of continuous processing time each, were completed on their

cluster. This system was combined with software provided by the AppleSeed

Project 36,61, making the computations possible.

Numerous properties of a classical plasma are well known. For example,

a fundamental behavior of a plasma is the collective behavior of its particles at a

107

frequency known as the plasma frequency. In the case of an electron plasma, it

is:

p
2 ≡

4πe2n

m
 (88)

where m is the mass and n is the volume density of the plasma particles.

Modes at this frequency are commonly detected in experiment, and these

observations are easily predicted by considering perturbations in the collective

motion of the particles due to their mutual Coulomb interactions. 62 In

addition, a phenomenon known as Debye screening occurs, which has a

characteristic length scale known as the Debye length:

Debye
2 ≡

T

4πe2n
(89)

where T is the temperature in units of energy.

It is also well known that plasmas exhibit electromagnetic and density

fluctuations in thermal equilibrium. Detailed studies of these electromagnetic

fluctuations have been performed by Dawson 63,64, Rostoker et al 65, Sitenko et

al 66, and Akheizer et al 67. Most of these results were compiled in books by

Sitenko and Akheizer et al. 68,69 A long tradition in plasma studies using the

analysis of the fluctuations in a plasma exists because it is a powerful tool to

investigate intrinsic properties of the plasma, such as its energy, screening

effects, and diffusion. The spectra of the longitudinal fluctuations in the electric

108

field of an isotropic plasma 68,69, in the classical case, has long been taken to be:

1

8π
EL (k,)

2
=

T Im L

L

2 (90)

where L is the longitudinal permittivity of the plasma. For systems near

thermal equilibrium, the fluctuation-dissipation theorem is useful because it

provides an estimate of the energy in the electric field for all frequencies and

wavenumbers. Therefore, one only needs to determine the dielectric

permittivities to obtain a complete description of this diagnostic of a plasma at

equilibrium. The calculation not only includes the energy in the fluctuations in

the well defined modes of the plasma, such as plasmons (where L ≈ 0), but also

the energy in the fluctuations that are not true propagating waves (where L is

far from zero), the so-called quasi-modes associated with the random motion of

the particles. It is well known that for high wavenumber and frequency in

classical plasmas at equilibrium, (90) follows a Gaussian as a function of

frequency.

Our problem concerns such fluctuations in the electric field in a hot,

dense electron plasma while accounting for effects due to quantum mechanics.

In particular, we wish to consider an electron plasma in the parameter regime

when the Debye length is similar to the de Broglie wavelength: deBroglie≡ h p .

The question is: Are these fluctuations in such a plasma different from what

would be expected in a completely classical model of that plasma? And: If so,

109

how are they different?

This question, inspired by a series of articles by Opher and Opher 70-74,

has importance because of its relevance to stellar evolution. Stellar models are

constructed by solving the basic stellar structure equations. The solution of

these equations requires specifications of the opacity, nuclear reaction rates, and

equation of state. In stellar evolution calculations for normal (non-compact)

stars, the plasma is treated as a mixture of ideal gases.

However, previous astrophysical calculations about the plasma of the

stellar interior assumed only classical mechanics applies. An electron plasma

with the plasma parameters of many stellar interiors can reach conditions

where the Debye length and de Broglie wavelength are similar. We should

emphasize that Opher and Opher did not investigate a regime where particles

are treated quantum-mechanically; they considered classical particles in

quantum electromagnetic fields. However, to the extent they incorporated

quantum mechanics in their plasma calculations, they predict that the resulting

energy density is measurably different. They find that, for high densities, as in

the interior of stars and in the early universe (e.g., for T =100 eV and

n > 1024cm −3 , when the de Broglie wavelength is comparable to the interparticle

distance), the assumption that the plasma behave purely classically is not valid.

If the answer to the above question is yes, that is, if plasmas do behave

differently from what would be assumed using classical mechanics, then models

110

of stellar evolution must be revised, which then forces estimates regarding the

ages of the stars and galaxies and the evolution of the early universe to be

reconsidered.

The work in this chapter regards using the quantum PIC code to test this

question. One of the authors of the work (M. Opher) that inspired this question

has provided direct assistance with this work. No other code capable of

modeling a plasma has as complete a model of quantum mechanics, and,

because previous quantum codes 75 in this physical regime can handle only a

few particles (~2), no other code that models quantum mechanics as completely

can model as large a problem as the quantum PIC code can. These features

make this work highly unique.

B. The Model and the Analysis

The plasma is modeled as a collection of electrons in a one-dimensional

box mutually repulsed by their electrostatic (Coulomb) fields using the

quantum PIC code. Note that this code models the electrons using quantum

mechanics, while the fields are assumed to be classical. These properties of this

model are distinct from those of the model in Opher’s and Opher’s published

theory. Their theory uses a three-dimensional model of classical particles and

studies fluctuations in an electromagnetic field modeled quantum-mechanically.

111

According to the predictions of Opher and Opher’s theory, the difference

that quantum mechanics makes is seen in the fluctuations due to the non-

propagating quasi-modes in the electric field in the system. So it is of interest to

see how different the fluctuation level of these quasi-modes are for a system of

quantum particles. Therefore, we focused on studying the energy density of

the electric field as a function of wavenumber k and angular frequency ,

which is the left side of (90). We believe studying this energy density on a

plasma in the relevant parameter regime should provide evidence needed to

answer our proposed question.

C. Implementation

The positions and momenta of the plasma particles are initialized in a

way inspired by one of the earliest “sheet model” plasma simulations. 23 The

simulation contains N quantum particles, each begun as a Gaussian of the form

described by (65). The distribution of initial momenta p0 is Maxwellian, like

that of a plasma at equilibrium, at a given temperature. The distribution of

initial positions x0 are computed by adding a random Maxwellian distribution

to the coordinates of regular lattice points in the simulation space. One lattice

point is used for each quantum particle, and the variance of the distribution is

equal to the lattice spacing. The standard deviation of the Gaussians are set

112

to four grid points. The random number generators of the original plasma PIC

code were used to create the Maxwellian distributions. Listing 1 shows the loop

that sets these initial conditions. Figure 25 depicts the particle placements.

Figure 25. Placement of initial positions of the particles. The dashed lines

indicate the lattice points, and the solid lines are the particle positions offset

from the lattice points.

The code is run using these initial conditions and the infinite square well

potential. The number density of the plasma is the number of quantum particle

divided by the width of the well. The number of quantum particles ranged

from 32 to 128, the well widths varied between 1016 and 2040 grid points, and

the number of time steps was between 512 and 1024. The resulting quantum

data sets were each on the order of 256 MB to over 1 GB in size. To ease the

memory requirements of the quantum PIC code, adjustments to the virtual

classical particle array allocation and the use of its indices throughout the code

were made. These adjustments enabled the code to reuse the same virtual

classical particle array for all quantum particles.

Since the electric fields calculated in the quantum PIC code subtract the

113

contribution due to the particular quantum particle being pushed (see Section C

of Chapter III and (57)), the total electric field is not calculated explicitly during

the simulation. Therefore, a separate code was derived from the quantum PIC

code that reread the entire quantum data file and used the same field solvers to

calculate E(x,t) , the electric field as a function of time and space, for the

entirety of the run. Another code then performed a two dimensional FFT on

this output to derive E(k,) and determine the energy density. Cross-sections

of the energy density are then studied for comparison to the theory.

D. Proper Comparison

In theoretical predictions regarding plasmas, it is most often assumed

that n Debye
3 >> 1 (or, in one dimension, n Debye >> 1). However, in a practical

computational simulation, n Debye
3 may be much lower than its value in the

plasma one is trying to model. For proper comparison of theory and

computation, we should bear in mind the consequences of representing a

plasma using a smaller number of macroscopic (or finite-size) particles before

making judgments about the predictions of quantum theory versus that of

classical theory. Studies of the consequences of finite-sized particles for the

fluctuation-dissipation theorem have been made by Langdon. 76

Since the classical theory of plasmas and plasma codes based in classical

114

mechanics are at our disposal, we wanted to determine what kind of

predictions would we see given only these tools. We wish to compare our

diagnostics of the classical plasma code against the predictions of classical

plasma theory, so we need to determine the dielectric permittivity of (90). In a

one-dimensional classical plasma, the permittivity is calculated 62 using

L(k,) = 1 − p
2

k2

1

kv − − i
k

∂f (v)

∂v
dv

−∞

∞

∫ (91)

where f (v) is the velocity distribution function of the plasma, and q is the

charge of the particle. Inserting a Maxwellian distribution for f (v) in (91) leads

to

L(k,) = 1 +
kD

2

k 2 1− zexp(− z2 2) exp(w2 2)dw
0

z

∫ + iz exp(− z 2 2)
π
2

 (92)

where

z ≡
k

m

T
(93)

and

kD
2 ≡

4πq2n

T
(94)

A plot of (90) using (92), (93), and (94) yields Figure 26.

115

Figure 26. Energy spectra of the longitudinal electric field in a hot plasma

assuming classical theory. The horizontal axis is frequency, and the colors of

the plots indicate spatial wavenumber, with blue being the highest.

EL(k,)
2

 is a two-dimensional function, so we describe our convention to

represent this energy density in one-dimensional plots here. In Figure 26, the

energy density is plotted as a function of frequency in a semi-log plot. The

colors indicate plots of different wavenumber, red being lowest and blue being

highest. The red is when k = 20 kD , the magenta when k = 40 kD , the green when

k = 60 kD , the cyan when k = 80 kD , and the blue when k = 100 kD . Each plot at a

constant k is normalized to 1 at = 0 . For consistent comparison to the

116

quantum results, these plotting characteristics form the convention used for the

remainder of the energy density plots in this chapter.

Figure 26 tells us that, in a purely classical model of a plasma, we would

expect the energy density of the plasma to decrease with increasing frequency.

However, with increasing wavenumber, the rate of the decrease as a function

of frequency would decrease. These properties lead to a characteristic behavior

of the normalized energy density of higher wavenumbers always being above

those of lower wavenumbers. As the wavenumber approaches infinity, the

energy density becomes constant as a function of frequency.

We performed a classical plasma simulation and extracted the energy

density of the electric field in the same parameter space used for Figure 26. The

simulation used a classical plasma PIC code (beps) 77 that led to the code that

the quantum PIC code was originally based on.

A plot like that of Figure 26 using data from a run using 128 classical

particles in a 1024 grid-point space in the classical plasma code is shown in

Figure 27.

117

Figure 27. Energy spectra of the longitudinal electric field in a hot plasma using

a 128-particle plasma simulation that assumes classical theory. The dashed

curves are from the classical simulation, while the solid curves are from classical

theory.

Figure 27 shows both solid curves for the theory and and dashed for the

simulation. At first glance, the noise in the data obscures some of what the

theory and simulation have in common, and some of the discrepancies seem

rather large. We are encountering the consequences of low particle statistics,

regardless of classical or quantum theory. Upon further study, Figure 27 does

show that the classical simulation shows many of the same characteristics of the

118

theory, such as the increasing normalized energy density with increasing

wavenumber, and the energy density becomes nearly constant with the highest

wavenumbers. And we can clearly see, at low k , a resonance at the plasma

frequency, confirming a fundamental collective effect in plasmas. (The k = 0

theory curve based on (90), (92), (93), and (94) was off scale.) Before making

further judgment, one should study what happens when the number of

particles in the plasma simulation is significantly increased.

Figure 28 shows results from a simulation like that used for Figure 27,

but with one hundred times as many particles. The macroscopic plasma

parameters were the same.

119

Figure 28. Energy spectra of the longitudinal electric field in a hot plasma using

a 12,800-particle plasma simulation that assumes classical theory. The solid lines

are theory, while the dashed is the simulation.

With a significant increase in the particle number, we can see that the simulation

is behaving more like the classical theory. Except for a portion of the k = 0 case,

the monotonically increasing energy with wavenumber is preserved, with the

constant energy density as wavenumber approaches infinity. However, the

increased number of particles allows the curves to more closely follow the

theoretical predictions. Note that, in the red, k = 20 kD , curve the simulation

falls below the theory, then at some point it becomes smooth and constant.

Also present in the k = 0 case, this behavior may indicate a noise floor present

in this diagnostic of the simulation.

Further, we were able to produce a classical simulation with almost

another hundred times as many particles. These results are shown in Figure 29.

120

Figure 29 . Energy spectra of the longitudinal electric field in a hot plasma using

a 1,024,000-particle plasma simulation that assumes classical theory. Solid lines

are theory, and dashed lines are from the simulation.

Note that the characteristics of these plots continue to be preserved, while the

noise level has decreased after increasing the particle number. The resonance at

the plasma frequency at low k is well resolved. Also, a significant difference

between Figure 28 and 29 is that the noise floor is encountered at a higher

frequency, as can be seen in how the red graph better follows the characteristics

of the theory before becoming constant. Further, this floor matches that of the

121

k = 0 case.

With this study of the consequences of finite particle count in mind, we

may look upon the 128-particle case shown in Figure 27 in proper perspective.

Based on the difference in noise floor observed in Figures 28 and 29, we are

inclined to extrapolate that the noise floor should have a larger effect in the 128-

particle case. Also, we would expect the noise level on the “signal” we wish to

deduce from Figure 27 to be significantly higher than that seen in Figure 28 and

29. From this study, it is evident that there are characteristics of this diagnostic

due solely to low particle statistics. To the extent of the commonality of the

studies, these results are consistent with the study by Langdon. 76 These

classical simulations are using PIC (or finite size) particles. To reproduce the

theoretical curves, we would need to both increase the number of particles and

decrease the particle (cell) size compared to Debye. (An alternative approach

might be to reinterpret the theoretical results by incorporating into (91) what

we would expect due to the shape function of these PIC particles.) These

phenomena should be kept in mind before making judgments about the results

of other simulations using similar particle numbers.

E. Quantum Theory and Simulation

Next, we wish to consider predictions that incorporate quantum

122

mechanics. The theories presented by Opher and Opher assumed three-

dimensional classical (deBroglie<< Debye) particles interacting with a quantum-

mechanically modeled electromagnetic field. This quantum PIC code is one

dimensional and assumes a classical electrostatic field. Therefore, for a proper

comparison, a new set of theoretical predictions must be made that are relevant

to this experiment.

(90) is, in fact, an approximation. 68,69 It is based on taking the limit as

h → 0 of

1

8π
EL (k,)

2
=

h
exp(h T) −1

Im L

L

2 (95)

Therefore, our prediction of the plasma model incorporating quantum theory

uses (95) without assuming that h → 0 while using the same dielectric

permittivity described by (92), (93), and (94). We base this approach on the

following. In Opher’s and Opher’s theory, one of their first proposals is not to

assume that h → 0 . Then, they assume a calculation of a quantum-mechanical

electromagnetic field in their calculation of the dielectric permittivity. Since the

field in our simulation is classical, we, for the purposes of this comparison,

assume a dielectric permittivity as described by (91). We also wish to assume a

Maxwellian velocity distribution for the plasma of quantum particles so that we

can directly compare against the classical plasma result. We should note that,

although we have techniques to handle antisymmetric wavefunctions in

123

principle, the computational requirements of such a procedure for 128 particles

make the task impractical. Thus, we are not incorporating electron degeneracy

effects into this model.

Using this model of the plasma possessing the same macroscopic plasma

parameters used for Figure 26, we are able to compare the quantum theoretical

prediction with the classical theoretical prediction. Also, in this case, the mean

de Broglie wavelength (specifically, the de Broglie wavelength for an electron

moving at the thermal velocity) was approximately twice that of the Debye

length. These predictions are compared in Figure 30.

Figure 30. Energy spectra of the longitudinal electric field in a hot plasma using

quantum theory and classical theory. The solid curves is from the quantum

124

prediction, while the dashed ones are due to the classical prediction.

The monotonically increasing normalized energy density with increasing

wavenumber is present in both the quantum and classical theory. But the key

difference seen in the quantum theory is that, at the same wavenumber and

frequency, the normalized energy density is below that of the classical theory.

This behavior can be seen in the red, k = 20 kD , curve. In fact, we can see that

the discrepancy between the classical prediction and quantum prediction

becomes more pronounced as wavenumber increases. This discrepancy is a

key characteristic that we wish to see in results from the quantum simulation.

For comparison to the quantum simulation, we created a plasma in the

quantum simulation possessing the macroscopic plasma parameters used for

the preceding figures in this chapter. Frames of a run using the quantum PIC

code to simulate 128 particles in a 1016 grid-point space are shown in Figure 31.

125

Figure 31. Three frames from the evolution of a set of Gaussians representing a

hot plasma.

We should reiterate that an important characteristic of this electron plasma is

that the mean de Broglie wavelength was approximately twice that of the

Debye length. In this regime, it becomes plausible that plasma effects compete

with those of quantum mechanics. This ratio fixes an expression relating well-

known plasma parameters:

T = h p
Debye

deBroglie

 (96)

where the momentum of an electron moving at the thermal velocity is used for

126

the de Broglie wavelength. Assuming the above length ratio and a density of

1027 cm−3 gives a temperature of 4.2 keV , or about 4.8 × 107 K . According to the

literature 62, these parameters are consistent with the conditions of a stellar

interior.

This simulation took approximately two weeks to complete on a cluster

16 G4/400’s. Plots of the simulation’s electrostatic energy density are shown in

Figures 32 and 33.

127

Figure 32. Energy spectra of the longitudinal electric field in a hot plasma,

shown in Figure 31, while including quantum-mechanical effects. The

horizontal axis is frequency, and the color of the plot indicate spatial

wavenumber, with blue being the highest. Results from the 128-particle

quantum simulation are shown in dashed curves, while the quantum theoretical

prediction (seen in Figure 30) is shown in solid curves.

128

Figure 33. A comparison against a classical simulation of the energy spectra of

the longitudinal electric field in a hot plasma, shown in Figure 31, while

129

accounting for quantum-mechanical effects. The horizontal axis is frequency,

and the color of the plot indicate spatial wavenumber, with blue being the

highest. Results from the 128-particle quantum simulation are shown in solid

curves, while results from the 1,024,000-particle classical simulation is shown in

dashed curves. The plots were split into two to make the curves easier to

distinguish.

The rise in the plateau at high frequency as a function of wavenumber indicate

the non-propagating quasi-modes. As in the earlier results, the quantum

simulation shows increasing normalized energy density with increasing

wavenumber, as we would expect from the quantum theory shown in Figure

30. Figure 32 also shows some of the effects visible in Figures 27 and 28 that are

characteristic of low particle number, such as how the computational results dip

below the theoretical results then flatten.

In Figure 33, the quantum results are shown in solid curves, while the

results from the 1,024,000-particle classical plasma simulation are shown in

dashed. We show these results to compare the consequences of using quantum

mechanics as opposed to classical mechanics. It was fortunate that this 128-

particle quantum simulation possessed a low enough noise level for

comparison.

By comparing the normalized energy density from the two simulations

at the same wavenumber, we can see a distinctive and consistent discrepancy

between the quantum prediction and the classical prediction. For example, in

the highest wavenumber (blue) plots, the classical simulation shows an almost

130

constant energy density as a function of frequency. However, the quantum

simulation shows an energy density that clearly decreases and stays below its

value at zero frequency. Based on the study of low particle statistics made in

the last section, it should be reasonable to believe that the decrease in energy

density with frequency is arrested by a noise floor similar to that observed in

Figures 27, 28, and 29. The character of the noise floor can be seen in all of the

plots of the quantum data.

However, even with the limitations due to low particle number, the

normalized energy density from the quantum simulation remains measurably

and consistently below that of the classical simulation at the same wavenumber.

This discrepancy is much like what we observed from the theoretical

predictions shown in Figure 30. This observation lends credence to the

proposal that quantum effects can have a measurable effect in plasmas which

were formerly treated as “classical plasmas”.

F. Conclusion

The results of this analysis are very promising. Not only do the plots in

Figure 33 contain many of the qualitative characteristics predicted by a theory

that includes certain quantum effects, but we were able to show a measurable

difference in the predictions of the quantum code compared to that of a code

131

based solely on classical mechanics. The similarities between the quantum PIC

code’s output and the quantum theory, embodied in Figures 30, 32, and 33,

indicate the code is duplicating at least some of the physics involved and has

significant bearing on the question at hand. With a more rigorous quantitative

analysis using plasma and quantum theory as it applies to the circumstances

modeled in the code, these simulations should carry weight in confirming the

correctness of proposals incorporating quantum mechanics into plasma models.

Further study is needed, not only on the quasi-modes seen in this

chapter, but on nonadiabatic modes (including those close to the plasma

frequency) of the plasma. In fact, a portion of the data from the same quantum

PIC simulation shown earlier reveals an intriguing effect. In a classical plasma,

a characteristic effect is a resonance at the plasma frequency, which can be

easily seen in the black curves of Figures 27, 28, and 29. Data from the

quantum simulation at low k is shown in Figure 34.

132

Figure 34. Energy spectra of the longitudinal electric field in a hot plasma at low

k while accounting for quantum-mechanical effects. The arrows point out rises

in the energy density, some of which could be similar in origin to the peak at

the plasma frequency seen in the classical results.

If this were a classical plasma, a sharp rise at or near the plasma frequency

would be expected in the plots with the lowest values of k . However, in its

place, we see a small rise in the quantum data. Since the de Broglie wavelength

in this simulation was greater than the Debye length, perhaps quantum effects

have largely smothered the plasma effects. However, these simulations

indicate that well-defined collective plasma modes of quantum particles (as

133

opposed to ballistic modes, a likely cause of the behavior seen in Figures 32 and

33) are still present. The density of the quantum particles was low (average

quantum particle density times the Debye length was less than one) by

standards of a normal plasma, so some plasma effects could be obscured by the

low particle statistics. Clearly, these issues are deserving of future work.

The work shown in this chapter logically leads to further steps. Methods

to create closer comparisons of theory and simulation are needed. Because of

the well-known characteristics of the classical code, it would be wise to

experiment with techniques such as smoothing or averaging (e.g., over

wavenumber and/or frequency) of data from the classical code. In addition, a

study of the origin of the noise floor, seen in plots from both the classical and

quantum codes, would be appropriate. This study applied to the classical

simulations could lead to a prediction of the noise floor relevant for

interpretation of the quantum data. Work by Langdon 76, suggests that similar

types of noise may be reduced by decreasing the time step or increasing the

duration of the simulation. Although it would obviously require more CPU

time, it is otherwise a simple experiment to try. With these considerations,

more direct comparisons between theory and simulation would become easier

to perform.

Further, approaches, alternative to that of (88), to estimating the

electrostatic energy density can be considered. One may derive the electric field

134

using the permittivity as a dielectric response function of the density

fluctuations in the plasma. This idea is inspired in a paper by Dawson. 78 For

example, a non-interacting model of the plasma could be interpreted as an

external charge density as seen in Ichimaru. 62 Some work on predictions using

the density fluctuations was performed, but the model, so far, did not provide a

comparison as close as the one presented here. Further work would be

appropriate.

Regarding the low particle statistics, quantum simulations of higher

particle number can be performed as well, with a corresponding increase in

computation time, of course. Some of the recommendations for more efficient

quantum simulation, presented in Chapter VII, can be performed for such

simulations. Together, the proposals described above paragraphs would take,

at minimum, six months of further work.

Further in the future, it may be possible to use this code to predict

reaction rates in a plasma. Estimates of nuclear reaction rates in some

extraterrestrial plasmas are higher than expectations inferred from Earth-based

laboratory experiments. In a plasma, ions are not “naked”, but are surrounded

by electrons that form a shielding cloud around them. The polarization clouds

partially screen their charges resulting in a lower Coulomb barrier between

them, thus providing an enhanced tunneling probability. In addition, collisions

are occurring, not just between particles and fixed shielding clouds, but

135

between particles and fluctuating shielding clouds. Consequently, the potential

barrier, and therefore the penetration rate, fluctuates. These phenomena

should be taken into account. For these purposes it may be desirable to create

a two-dimensional version of the code and include ions.

136

VII. Future Work

A. The Future

The quantum PIC code has a great deal of potential utility, demonstrated

by the examples shown in this dissertation. In addition, it is possible to evolve

the code into a new tool for the future. This code and the experience

accumulated in building it may serve as a guide for codes not yet written that

explore new possibilities. It is the hope of this author that this work is

important, not simply for itself in isolation, but for the future development to

which it leads. This chapter is meant to serve as a collection of suggestions for

such future work.

137

B. One Dimension

Leveraging off of Chapter V, further analyses of the one-dimensional

atom may be pursued. The two-electron studies of higher energy eigenstates

may be extracted from further runs of the type described in that chapter, and

superposition descriptions of those eigenstates in terms of the one-electron

eigenstates could be determined. Also, more electrons could be added to

analyze states of higher Hilbert spaces. The calculations involved to construct

and analyze an antisymmetrized state of these higher dimensions will be more

involved and are likely to grow in computational cost exponentially as a

function of quantum particle number. Visualization of the three-electron case

could utilize volumetric raytracing techniques developed for other visualization

software 79. This visualization could then be used to slice the higher-

dimensional states that represent more electrons. Practical considerations, such

as storage space, may limit these studies to roughly six electrons.

It may be possible to apply techniques developed for a pair of

antisymmetrized electrons to construct simplified models of multielectron

states. Usually, the behavior of electrons with probability densities that are far

apart are affected little by their antisymmetric properties, but those that

approach each other generally are affected. Perhaps an approximation of the

fully antisymmetrized N-electron state could be constructed by

138

antisymmetrizing only each closest pair of electrons (determined by

considering properties of their individual probability densities, such as their

overlap) while calculating a simplified version for those that are far apart. This

technique may serve useful for the analysis or for the simulation itself, e.g., if

calculations based on the N-electron wavefunction are desired to influence the

simulation directly. The infinite square well, the simple harmonic oscillator, and

the one-dimensional atom may serve as testing environments for such

experiments with antisymmetrized states.

Using Chapter VI as a starting point, it is possible to pursue further

comparisons to the proposal about quantum effects in a plasma. Additional

tests with other plasma parameter regimes may serve to provide useful

comparisons with the theory. In addition, one may add nuclei to the quantum

PIC code and use the simulation to estimate nuclear reaction rates by observing

how these nuclei behave. Because of the considerably greater mass of the

nuclei, their de Broglie wavelengths will be much smaller, so it is likely to be

sufficient to model these nuclei as classical particles, not unlike the original

plasma code. This hybrid plasma PIC/quantum PIC code could contain code

that models a number of classically modeled positively charged protons or

deuterons interacting with an equal number of quantum-mechanically modeled

negatively charged electrons. Since there would be so few nuclei by

comparison to the number of virtual classical particles, the additional

139

computation cost should be immeasurable, and the additional plasma PIC

pieces should weave easily with the existing quantum PIC code. This author

recommends beginning with existing quantum PIC code, then adding the

relevant pieces to model the nuclei. The computational costs would require

many days on a parallel computers with a few nodes and hours on a parallel

computer with hundreds of nodes.

Additional tests of the semiclassical techniques used in the quantum PIC

code can be explored, such as more accurate modeling of finite quantum

barriers and wells. In the case of the rectangular barrier, rather than

attempting to smooth the barrier edges, one could borrow the technique used

for the boundary conditions of the infinite square well. In the external potential

routine, the correct, stair-stepped potential may be added to the potential array,

while nothing is added to the force array. Then, in the particle pusher, if a

virtual classical particle is about to cross a barrier edge, a test on its momentum

is made. Those virtual classical particles that have sufficient momenta to

“climb” the potential may pass and suffer a momentum loss, while those that

do not have the required momentum are bounced. Those virtual classical

particles that begin inside the barrier and fall off are given a momentum kick

upon exiting the barrier. Note that these momentum adjustments would occur

sharply at the barrier edges, much like the infinite square well boundary

conditions. In this author’s opinion, this method should be sufficient to allow

140

for accurate modeling of quantum tunneling phenomena. Finite square wells

would be modeled similarly, with the momentum behavior switched. This

proposed method was conceived and considered while investigating the

rectangular quantum barrier quantitatively, but was not attempted because its

applicability seemed limited to that problem, and other problems in the course

of this research had higher priority.

Another type of quantum system that can be straightforwardly

addressed is those involving the Morse potential. It would be a matter of

entering its form into the external potential routine and setting up initial

conditions of interest. Evidence of other work 11,13,58 using this potential

indicate it may be of significant interest in quantum and molecular chemistry.

What is convenient about addressing problems like these with this code

is that these one-particle runs take only on the order of hours on modern

personal computing hardware. This would allow progress to be made using

limited computing resources.

C. Higher Dimensions

Like has been done in the past with plasma codes, this quantum PIC

code may be extrapolated to higher dimensions. Study of the derivation,

shown in Chapter II, was made for two- and three-dimensional cases. For a

141

great deal of the derivation, the replacement of momentum and space

coordinates with their vector counterparts is straightforward (e.g., add vector

signs and convert many multiplications to dot-products). For example, (55)

would become:

x f (t + ∆t) = exp(
ix f • pcl f

h
)exp(−

ix cl N
• pcl f

h
)

exp iScl h()
h3 det(M)

x0 (t) (∆x∆p)3

x0

∑
p0

∑
(97)

Likewise, the classical path iterative method and the definitions of quantities

such as the Lagrangian and the action are easily extrapolated. With these

extrapolations, the addition of electromagnetism fits better into this context

(including the use of the canonical momentum

r
p −

e

c

r
A). Also, with magnetism,

the concept of spin can be incorporated, perhaps using a spinor representation

to describe the evolution the wavefunction. Spin terms of the Hamiltonian are

easily included in the effective potential. These spinor wavefunctions may

require the modeling of a pair of virtual classical particles for every one that did

not consider spin.

A point of greater potential difficulty is evaluating the determinant in

this case. Consider the description given in Sections E of the semiclassical

matrix and F of its determinant of Chapter II. While the matrix became

tridiagonal in the one-dimensional case, it has been determined that the

142

corresponding determinant in the two- and three-dimensional cases behave as

a product of determinants of triagonal matrices (one for each dimension) with

the addition of terms, proportional to cross derivatives (e.g.,
∂ 2V

∂x∂y
) of the

effective potential, that link matrix elements describing terms from different

dimensions. The two-dimensional case was investigated sufficiently to

determine that it should be possible to compute the determinant of the two-

dimensional semiclassical matrix using a parallel pair of iterative methods.

These iteration schemes are equivalent to a pair of finite difference equations

possessing cross terms that link these equations together multiplied by

coefficients proportional to the cross derivatives of the effective potential.

Based on the analysis in two-dimensions, it seems reasonable to expect that a

similar form would occur in three-dimensions.

However, a question should be considered: how important are these

cross terms? Perhaps it is sufficient to follow the evolution of these finite

difference equations, one per dimension, and ignore the cross terms. It has

been observed in the one-dimensional quantum PIC code that the determinant

evaluations result in multipliers close to one. Since these cross terms would be

a correction to an already small effect, it may be sufficient to evaluate the

determinant by considering the multidimensional semiclassical matrix

independently by dimension.

143

Assuming the details of the semiclassical methods used for a

multidimensional quantum PIC code can be resolved, such a code could

provide great utility. A two-dimensional version could simulate the physical

situations, named “quantum billiards”, in the article by Heller and Tomsovic 13

instead with multiple quantum particles. The quantum corrals built with

scanning tunneling microscopes could be modeled using any number of

electrons. Such a code would also have great relevance to any model of

phenomenon on silicon substrates, such as quantum dots and circuitry. The

problem could be defined as electrons exploring a space with potentials

determined by the circuit design. Considering the foreseeable end of Moore’s

Law and its consequences to computational hardware in the information age,

quantum effects on the design of smaller and smaller transistors and other gate

logic are likely to become significant. (Some of these questions may be

answerable using the current code.) A two-dimensional quantum PIC code

could help model and predict the behavior of proposed designs, perhaps

extending the lifetime of the processor improvement rate the computer

industry has so far enjoyed.

A three-dimensional quantum PIC code could have applicability to even

more difficult quantum problems. In line with the above problem, three-

dimensional potentials could be experimented with, adding a new dimension in

circuit design, or provide understanding of other phenomenon such as electron

144

gases in metals. The simplest problem of a more fundamental nature would be

multielectron atoms, duplicating shell structure and other phenomenon we

know to occur in atoms. Early versions will probably model the nucleus

classically, perhaps extending it to a quantum model later. With the atomic

simulations established, then multiple atoms can be combined to form

molecules, allowing us to analyze their behavior, including their internal

oscillations. It may be sufficient to model such atoms with a few quantum

electrons each. These electrons provide bonding while surrounding noble

element based cores. Ultimately, hundreds of atoms could be assembled to

form complex molecules to answer questions about complicated quantum

problems such as protein structure and how they fold.

Combing electromagnetism with the three-dimensional quantum PIC

code would add a wide space of problems. The simplest would be absorption

and emission of light by single atoms. It may be sufficient to provide a classical

model of electromagnetism for this purpose, much like how current

electromagnetic plasma PIC codes operate. Similar phenomena can be

modeled for molecules. A more radical application would be

photodisassociation of atoms from molecules. Then, considering how such

processes can absorb or emit significant amounts of light, chemical reactions

could be modeled. Eventually, more accurate models may wish to extrapolate

the semiclassical methods to relativistic 80 paths, since relativistic effects have

145

been observed in atoms.

In any case, this direction of exploration of quantum modeling methods

is vast.

D. Evolution of the Implementation

Since it would be desirable to reduce the computation time necessary for

simulations using the current code or future similar codes, we explore

alternative computational methods to implement this type of simulation.

A modification to the current parallelization scheme could be attempted

with the current quantum PIC code. Currently, each quantum particle is

considered one at a time. Each quantum particle’s virtual classical paths are

evaluated, then that quantum wavefunction is reconstructed, and then the code

moves on to the next quantum particle. It is possible to instead evaluate all the

virtual classical particles of all the quantum particles at once. This scheme

would require adding a quantum particle index to the virtual particle array and

potential and field arrays, increasing their allocation size significantly, and

appropriate adjustments to the code for virtual classical particles accessing

information relevant to their corresponding quantum particles must be made.

While the disadvantage is increased memory requirements, the advantage

would be that the code would more efficiently utilize its particle manager

146

routine on a parallel computer. Since there would be more virtual classical

particle information passed between processors per node, the message sizes

would be larger, pushing the communications bandwidth usage to a more

efficient regime. The effect would be more efficient parallelism during the

particle push/particle manager loop, which is typically the most time-

consuming portion of the code. (Depending on the problem and the number of

processors, the distribution of CPU time is: 50-80% on the particle push/particle

manager loop, 15-40% on the wavefunction reconstruction, and <10% on the

field solve.) This scheme would show the greatest improvement on parallel

systems with large (>100) numbers of nodes (which typically has ample

amounts of memory).

Some of the routines can be accelerated using specialized hardware. As

the plasma code has been vectorized in years past for vector processors such as

those by Cray, the quantum PIC code can be vectorized for current vector

hardware, such as the AltiVec instruction unit in the Motorola MPC74x0

PowerPC Microprocessor (a.k.a., the “G4” series). The particle pusher, since it

is largely unchanged from the plasma code, has clear methods of vectorization

just like how the plasma code’s pusher was vectorized.

In addition, the wavefunction reconstruction routine can be vectorized.

Consider the description in Section C of Chapter III, in particular, (61), (62), and

Listing 5. After rearranging the arrays (such as wtemp) which hold the

147

accumulated virtual classical particle contributions so that space is the least

significant index and it is aligned in memory on a vector boundary, the virtual

classical particle contribution deposit may be rewritten in the following way.

Let us assume the vectors contain n floating-point elements. (We provide this

discussion with the AltiVec instruction set in mind, which has properties distinct

from other architectures, such as those of Cray.) Promote ctemp and cincr in

Listing 5 to vector complex, but alter their initialization. Load the elements

of ctemp sequentially with {1, m , m 2 , m3 , ... , m n−1 } and multiply all the

elements of ctemp by y0 . In the meantime, load all the elements of cincr with

m n . Then loop over the number of complex vectors that are in wtemp adding

ctemp to the first vector, then multiplying cincr by ctemp, and continue the

loop on the rest of wtemp. This completes a virtual classical particle deposit

evaluation. The sum across processors at the end of this routine is easily

vectorized as well. Of course, these are complex calculations, so such complex

computations will have to be built in languages without complex intrinsics.

Assuming the number of grid points in each processor is large compared to n (4

in the case of AltiVec), this vectorized code should provide a speed-up factor of

almost n for the wavefunction reconstruction routine. A similar calculation for

two- and three-dimensional quantum PIC codes should speed up at least as well

as in the one-dimensional code.

In many simulations using the quantum PIC code shown in this

148

dissertation, each quantum wavefunction is somewhat localized in space.

Another optimization method may be used that takes advantage of this

observation. A virtual classical particle’s contribution is proportional to the

wavefunction at that particle’s starting position (see Sections A and C of

Chapter III, (55), and (59)). If the wavefunction magnitude at that position is

small, then the computations on paths that start there are not as significant to

the answer as others. It may be possible to recognize portions of the

wavefunctions that are small (prioritized by (x)
2
, for example) and reduce the

number of virtual classical particles that begin there, while proportionally

increasing their contribution. This reduction in number and increase in

contribution can be performed in stages based on (x)
2
. The momentum

spread from that point could be reduced, made more sparse, or both. This

technique would selectively reduce the sampling of phase space and reduce the

computational cost to push one quantum particle. At best, this approach could

reduce the number of needed virtual classical particles per quantum particle to

be proportional to the volume of the space, rather than the phase space, of the

simulation. One must be careful not to reduce too much, however, or else the

delicate balance of cancellation due to phase could be disturbed. The author

recommends one-particle tests like those shown in Chapter IV be performed to

validate the code.

Assuming this technique is successfully implemented, the code would

149

then generate numerous classical paths in concentrated locations where the

wavefunction probability density was most significant. In a PIC code on a

parallel system, these concentrations lead to load imbalances: certain processors

would be assigned more work than others. This imbalance could force other

processors to wait for the overloaded processors to catch up. The solution

would be to implement the alternative parallelization scheme described earlier

in this section. Since the quantum particles, if they are localized, are most likely

to distribute their localizations across many cells, then the virtual classical

particle concentrations are likely to be well distributed among processors, so

the load should become well-balanced once again. Such techniques can be

combined with ones established for plasma PIC codes. 55, 81, 82

E. Evolution of the Methods

Significant modifications to the semiclassical methods and their

application could be made, for the purposes of greater computational efficiency,

greater physical accuracy, or exploring new types of simulations.

There exist ways to reduce the cost of the numerical methods to push the

virtual classical particles. Since the fields are held constant for many classical

time steps, a multi-step method could be implemented, with the caveat of

guaranteeing that the method can account for the partitioning of the fields

150

according to PIC methods. Another approach could be attempted to use few

classical paths. Contributions of paths “in between” the calculated paths could

be interpolated. Also, since most paths start out very close to each other, the

number of calculated paths could start with only a few, then accumulate,

generated from the interpolated contributions as the classical time steps exhaust

the quantum time step.

Other approaches exist to reduce the number of virtual classical particles

per quantum particle. Much of the virtual classical particle contributions cancel

each other, typically in the range of high momentum. By looking at the grid

points of the wavefunction near the starting point of the path, an estimate of

the “primary” momentum of the wavefunction could be made. Virtual classical

particles could be launched from that starting point in a narrower “momentum

cone” around that primary momentum. Since action, for high momentum,

becomes dominated by the kinetic term of the Lagrangian, contributions

beyond that momentum cone could be approximated with an analytical

solution. Such an analytical solution would have similarities to the Fresnel

integrals. Because of the form of the kernel of such integrals, this method may

become analytically simpler in the two-dimensional case (or in two-dimensional

slices of the three-dimensional case) than in the one-dimensional case, as has

been seen in other studies involving such integrals 83.

Another possibility is the use of wavelet theory. 84 Wavelets are a kind

151

of basis set that spans a phase space differently than a pure space or Fourier

space representation. Wavelets have been used to identify frequency ranges of

signals in a limited time interval. Since the phase space explored here is position

space and its Fourier space, momentum, wavelets have the potential prescribe

an efficient and even way of sampling phase space in this problem.

Another potentially viable approach involved interpreting the

discretization of the wavefunction as a representation on grid-point functions,

represented with a basis g (as opposed to the x basis). With this formalism,

(55) is replaced with the following:

g f (t + ∆t) = g(g f − xclN)
exp iScl h()
h det(M)

˜ g (p0) g0 (t) ∆g∆p

g0

∑
p0

∑ (98)

where g(x) ≡ x g is the grid-point function and ˜ g (p) ≡ p g is the grid-point

function in momentum space. Conceptually, the wavefunction can be thought

of as a superposition of these grid-point functions. An individual grid-point

function is highly localized in space, implying, by the Heisenberg uncertainty

principle, a wide distribution in momenta. This explosion of momenta can be

thought to be expressed in the classical paths emanating from the grid-point.

These “momenta explosions” is another way of looking at path integrals. The

superposition of the resulting explosions of paths gives the new wavefunction.

This grid-point approach was extensively studied early on in the code

development (reflected in Appendix A). This approach has the conceptual ease

152

of being a highly localized virtual classical particle deposit. The best behaved

grid-point function found was a Gaussian with a standard deviation of the grid

spacing, but all attempts thus far resulted in the high-momentum attenuation

discussed in Section B of Chapter IV. Numerous techniques were developed to

enhance the momentum distribution to counteract the attenuation, but those

techniques were eventually abandoned in this work. However, some

applications may find that attenuation acceptable because it has a faster virtual

classical particle deposit. This choice is a tradeoff between computation time

and accuracy, and the solution presented in Chapter II and III chooses accuracy.

An approach using grid-point functions, perhaps in combination with wavelet

methods, may yet be found that provides both high accuracy and high

efficiency.

The one-particle Hamiltonian used in Chapter II contained an effective

potential that was defined in Chapter III to assume a mean-field approximation

for the other quantum particles. Higher-order corrections to the effective

potential are possible. For the duration of the quantum push, the potential is

assumed to be static, which in turn assumes all other quantum particles are

static. One could reconstruct the wavefunction, then the fields, at every classical

time step, essentially making ∆t =∂ t . A possible correction, without such a

drastic increase in CPU time, involves a way to estimate the evolution of the

electrostatic potential due to other quantum particles for the duration of the

153

quantum time step. For the sake of clarity of this presentation, let us assume

there is only one other quantum particle. We wish to study the evolution of

1 of a two particle state 1 ⊗ 2 .

Ψ(t) = exp(−

i ˆ H t

h
) 1 ⊗ 2 (99)

where the Hamiltonian ˆ H is of the form

ˆ H = ˆ H 1 + ˆ H 12 + ˆ H 2 (100)

where ˆ H 1 and ˆ H 2 are the part of the Hamiltonian containing operators that act

only on particle 1 and 2 , respectively, and ˆ H 12 describes the terms that

have operators that act on both particles. Hitting

2 exp(
i ˆ H 2t

h
) on (99) gives

2 exp(

i ˆ H 2t

h
) Ψ(t) = 2 exp(

i ˆ H 2t

h
)exp(−

i ˆ H 12t

h
)exp(−

i ˆ H 2t

h
) 2

 exp(−

i ˆ H 1t

h
) 1

(101)

Let us assume terms of order

ˆ H 12t

h

2

 and higher are small. Therefore

2 exp(
i ˆ H 2t

h
)exp(−

i ˆ H 12t

h
)exp(−

i ˆ H 2t

h
) 2 ≅

2 exp(
i ˆ H 2t
h

) 1 − i ˆ H 12t
h

 exp(− i ˆ H 2t

h
) 2

(102)

Using

154

exp(ˆ B) ˆ A exp(− ˆ B) = ˆ A + ˆ B , ˆ A [] +

1

2
ˆ B , ˆ B , ˆ A [][] +

1

3!
ˆ B , ˆ B , ˆ B , ˆ A [][][] +L (103)

on (102) yields

2 exp(
i ˆ H 2t
h

)exp(− i ˆ H 12t
h

)exp(− i ˆ H 2t
h

) 2 ≅ 1− it
h

(

2
ˆ H 12 2 + it

h 2
ˆ H 2, ˆ H 12[] 2 + 1

2
it
h

2

2
ˆ H 2 , ˆ H 2, ˆ H 12[][] 2 +L)

(104)

Let us assume ˆ H i and ˆ H 12 are of the form

ˆ H i =
ˆ p i

2

2mi

+ Vi(ˆ x i) (105)

ˆ H 12 = V12(ˆ x 1, ˆ x 2) (106)

Then, by inserting 1 = dx2 x2 x2∫ ,

2
ˆ H 12 2 = 2 *(x2)V12(ˆ x 1, x2) 2 (x2) dx2∫ , (107)

which we recognize as the mean-field approximation. Because

ˆ x 1, ˆ x 2[] = ˆ x 1, ˆ p 2[] = 0 ,

ˆ H 2,
ˆ H 12[] =

1

2m2

ˆ p 2
2,V12(ˆ x 1, ˆ x 2)[] (108)

Strategically inserting 1 = dx2 x2 x2∫ into 2
ˆ H 2 , ˆ H 12[] 2 yields

155

2
ˆ H 2, ˆ H 12[] 2 =

1
2m2

2
ˆ p 2 x2 x2

ˆ p 2V12(ˆ x 1, ˆ x 2) 2 − 2 V12(ˆ x 1, ˆ x 2) ˆ p 2 x2 x2
ˆ p 2 2() dx2∫

(109)

Using

x2

ˆ p 2 =
h
i

∂
∂x2

x2 ,

2
ˆ H 2,

ˆ H 12[] 2 =

h2

2m2

∂ 2 *(x2)

∂x2

∂
∂x2

V12 (ˆ x 1, x2) 2 (x2)()

− ∂
∂x2

2 *(x2)V12(ˆ x 1,x2)() ∂ 2(x2)

∂x2

dx2∫
(110)

Simplifying the derivatives, canceling terms, and factoring gives

2

ˆ H 2 , ˆ H 12[] 2 =
h2

2m2

∂V12(ˆ x 1, x2)

∂x2

∂ 2 *(x2)

∂x2
2 (x2) − 2 *(x2)

∂ 2(x2)

∂x2

 dx2∫

(111)

We recognize that the derivative terms on 2 is proportional to the probability

current and the derivative of V12 is a dipole potential. Combining (111), (107),

and (104) with (101) gives

2 exp(

i ˆ H 2t

h
) Ψ(t) = exp(−

i ˆ H 1eff
t

h
) 1 (112)

where

156

ˆ H 1eff =
ˆ p 1

2

2m
+ V1eff (ˆ x 1) (113)

is the effective Hamiltonian for particle 1 and

V1eff
(ˆ x 1) = V1(ˆ x 1) + 2 *(x2)V12(ˆ x 1,x2) 2(x2) dx2∫

+ ith
2m2

∂V12 (ˆ x 1, x2)

∂x2

∂ 2 *(x2)

∂x2

2(x2) − 2 *(x2)
∂ 2 (x2)

∂x2

 dx2∫ +L

(114)

is the effective potential for particle 1. In the case of the potentials describing

electrostatics, this method evaluates the electric field and potential due to the

charge density and dipole components of the other wavefunction. By

extending the derivation to higher terms in (104), quadrupole and higher-order

components can be included, if desired. Because the terms beyond the original

mean-field term are time-dependent terms, this method can be thought of as a

predictor-type correction to the mean-field approximation.

An avenue of investigation worth pursuing concerns the momentum

Jacobian
∂pcl f

∂p0

 that was assumed to be one in producing (55) from (51). While

it is most likely that virtual classical particle contributions of neighboring

momenta make the cancellation due to phase as smooth as we have seen, it is

possible that a correct evaluation of this momentum Jacobian will enable

methods that sample momentum space with lesser density possible. In the

course of this work, the properties of this multiplier were not explored. It may

157

also provide ways of estimating the contributions of virtual classical particles of

momenta in between virtual classical particles that are evaluated.

In addition, the questions concerning boundary conditions raised in

Section D of Chapter II could be addressed. The bounce point of the virtual

classical particles being one-half grid beyond the wall is a question that may be

answered by a more detailed examination of the semiclassical methods and

how they incorporate boundary conditions. For now, the quantum PIC code

functions, but, eventually, this issue may be worth investigating.

If the memory limitations could be overcome, this application of the

semiclassical method could be used to evaluate systems with large Hilbert

spaces (e.g., improvements on (54)), as is the case with wavefunctions of

multiple particles. The network of paths traced by the virtual classical particles

could be used to link representations of multiparticle quantum wavefunctions,

just as they have been here with single particle wavefunctions. In this author’s

opinion, applying this method of evolving such a wavefunction is viable. The

particle pusher would be largely unchanged, while the wavefunction

reconstruction routine would evaluate slices (in x1 , x2 , x3 , etc.) of the much

larger dataset representing the initial and final multiparticle wavefunctions. If

such a code could be constructed, it could simulate the most challenging

problems in quantum physics involving quantum correlations between

particles. Such a code could model EPR pairs, quantum teleportation, and many

158

other aspects of quantum computing.

F. Conclusion

In conclusion, we have seen the techniques, theoretical and

computational, used to construct, test, and operate a quantum PIC code based

on semiclassical methods. The examples shown in this dissertation provide a

demonstration of this code’s direct applicability to questions in physics where

quantum phenomena are important. In addition, this code provides a test bed

to further develop and apply semiclassical techniques. Finally, the experience

accumulated while developing the code, and the code itself, is ground-breaking

work and should be used as a guide in the development of future codes that

model quantum mechanics using similar methods, helping to avoid the pitfalls

already encountered and suggesting ways of finding reliable and accurate

methods. By establishing a foundation for this form of semiclassical methods,

this code and its development supply building blocks and knowledge to the

development of quantum-mechanical models in the future. This endeavor, like

others in science and in art, is “never finished, only abandoned.”

159

VIII. Appendix A

- Development of a New Code

A. Experimentation

Like many other pursuits, discovery and progress in science do not

always proceed in a straight line, sometimes encountering problems and dead-

ends. But, with patience and time, the correct path can be found, sometimes

because of what was learned by encountering such errors. This work is no

exception. There was a great deal that went wrong which led us to what was

right. Before finding the basic design that is common today, Thomas A. Edison

tested hundreds of devices intended to be light bulbs. In this Appendix, we

present some of our bad light bulbs, in the hopes that others may learn as we

did.

160

B. Virtual Particle Distribution

An early idea of much discussion was the distribution of the virtual

classical paths. In a plasma code, the classical particle data is retained and

updated throughout the life of the simulation. Some properties of quantum

wavefunctions were known to be like classical plasmas, so the idea was

proposed that the classical information in this quantum PIC code would also be

retained throughout the life of the simulation. (This idea is expressed in Figure

4 of Reference 11.) It took some time to create the tests that most clearly

resolved the consequences of using this approach.

The following comparison uses a pair of electrostatically repulsive

quantum particles initialized as Gaussians. These runs were identical except for

the nature of the classical particle preparation. One run has the classical

information initialized with random positions and momenta, just like in a

plasma code. This information at the end of one quantum time step was used

for the next. The value of the initial wavefunction that these classical particles

acquired was interpolated between grid points like how the plasma code

interpolates electric field and potential information. In the other run, the

classical information was reinitialized on a space and momentum grid as

described in Chapter III. All other aspects of the code were identical. Figure 35

shows the comparison.

161

Figure 35. A comparison of runs using randomly initialized classical

information retained between time steps (top) versus regularly initialized

classical information at every time step (bottom).

Within a couple dozen time steps the result using the plasma-like classical paths

shows the wavefunction being shredded (see t=3.8 in the figure). This non-

physical behavior is serious enough that the simulation never fully recovers,

while the run using classical data that is reinitialized at every time step shows

162

smooth behavior over many time steps.

This behavior occurs because of a few likely reasons. First, the classical

paths, because of how long they are run, could become overpopulated in some

parts of phase space, while leaving other portions undersampled. Second, the

nature of the random initialization could cause noise from this random

arrangement to seep into the quantum wavefunction. This behavior is much

like the difference between Monte Carlo integration and other analytical

techniques. The stability and correctness of the wavefunction evolution

intimately rely on the delicate cancellation of the virtual classical paths’

contributions. In some ways, it is a wonder that all of these semiclassical

calculations do not degenerate into what is shown in the top of this figure.

C. Alternative Depositing

The initial versions of the quantum PIC code were based on a grid-point

representation of the wavefunction. Using grid-point functions were

considered a viable approach to representing and understanding a discretized

quantum wavefunction. Much of the calculation was unchanged from that

shown in Chapter II and III, as a comparison between (98) and (55) will show.

Simulations using this method did show qualitative features not unlike theory,

and, in particular cases such as the SHO, some quantitative comparisons

163

showed great promise.

However, as discussed in Section B of Chapter III, an energy loss in the

simulation was noticed, studied, heard, and analyzed. The root of the problem

was found to be in the virtual classical particle deposit. The net effect of the

problem was as if the wavefunction was convoluted with the grid-point

function every time step, which was, in retrospect, exactly what the code was

doing.

Therefore, we attempted revisions in the code to reverse the undesired

effect. In the context of the grid-point representation, the grid-point functions

that formed the initial wavefunction were thought to “emit” virtual classical

particles, while the grid-point functions forming the final wavefunction were

thought to “collect” these particles. Hence, the grid-points at the beginning and

end were called “emitters” and “collectors”, respectively, a nomenclature

inspired by leads of a transistor.

Numerous ideas were attempted, many of which were variations on the

functions for the emitter and collector grid-point functions. The emitter

functions were implemented in the particle preparation routine, while the

wavefunction reconstruction/particle deposit routine handled the collectors.

Many of these ideas were not explored chronologically in this order:

• The plasma code’s charge deposit - The original algorithm for depositing

charge on a grid in the plasma code was still present, and it served the

164

plasma code well, so we borrowed it for the earliest attempts in the

virtual classical particle deposit. It was among the worst high-

momentum attenuators.

• Gaussian grid-point functions - Since a Gaussian is the only wavefunction

known to possess the minimum uncertainty allowed by the Heisenberg

uncertainty principle, it would sample the smallest piece of phase space

possible, making this a natural choice. The most obvious choice for the

standard deviation of the Gaussians was 0.5 grids. This setup

demonstrated an energy loss that was easy to predict analytically, which

allowed us to confirm that this was the origin of the energy loss.

Experiments with a variety of from 0.3 to 0.75 were attempted in the

hopes of discovering a value that minimized the energy loss. A

minimum loss for some test cases were found, but it was not a minimum

for all.

• Nearest neighbor - Virtual classical particles contribute only to the grid

point closest to its final position. This solution produced stable results,

but the energy loss was greater.

• Wide spread of contributions - Since it was conceivable that a virtual

classical particle could contribute to more than one grid-point, its

contributions were spread, with coefficients determined by the grid-

point function, to up to seven grids at a time. This algorithm increased

165

the computation time without significant other benefit.

• Momentum boosting in the emitters - What if the emitters could

compensate for the loss in the collectors? Since the particle distribution

from each grid-point ranged evenly in momentum space, it was a simple

matter to insert a multiplier as a function of initial momentum,

enhancing the momentum distribution. The problem that arose was that

it often enhanced the noise as well, and the errors would grow

exponentially, destroying the wavefunction. Combinations of other

emitters were attempted with other collectors. Also, this approach had

the conceptual problem of implying that the emitter and collector

functions were not alike, even though that they should represent the

same basis. However, it did appear that the effects of the emitters and

collectors were independent of each other.

• Post-collector processing - After the virtual classical particles were

deposited and the wavefunctions were reconstructed, a tridiagonal

solver was performed to “un-convolute” the wavefunction, in the hopes

of undoing the “damage” caused to the wavefunction. It helped, but not

in a way that was completely consistent with the attenuation.

• Custom-shaped grid-point functions and other functional relationships -

Attempts were made to determine grid-point functions whose Fourier

transforms were flat for much of momentum space, then tapered off in

166

the range of momenta that “don’t matter”. Some of these were based

various combinations of exponentials. The idea was: perhaps the

attenuation was good to keep for the sake of stability, but a middle

range of momenta could be preserved to retain the desired physics.

Some of the functions attempted included instances of the Fermi-Dirac

distribution function from statistics. Two problems occurred: 1. the

resulting function in position space was far more costly to determine and

compute to justify keeping; and 2. The “interesting range” of momenta

was found to be most of the possible momenta, so the tapering would

be far too sharp to do any good.

• Grid-point functions that were zero at neighboring grid-points - Perhaps

a grid-point function could be constructed that was zero at integer grid-

points away, for example one like sin(πx)/ x . Using transcendentals

proved very costly computationally without significant benefit, and the

function sin(πx)/ x was not localized enough (i.e., did not decay fast

enough) to be practical as a grid-point function. Some were tried based

on polynomials that achieved these conditions. Others were designed

based on superpositions of three to seven Gaussians, each at positions

one grid-point away. The idea was that a pair of Gaussians one grid

away from the center would subtract the center one just enough to

make the function zero at one grid-point away. Then two more would

167

make the function zero another grid away, and so on. The coefficients of

these Gaussians were adjusted so that these conditions would hold.

These tests were combined with a variety of ‘s for the Gaussians, and

the emitters were made to match. This produced the best and most

stable results, reducing the energy loss from 1 part in 100 to 1 part in

5000 per time step.

For a long time, a loss of 1 part in 5000 for most wavefunctions was the

best available. It was only realized later that extending the derivation to its

fullest extent led to the equations shown in Chapter II and III. Interpreted in

the above context, it described a emitter that was a delta function in space and a

collector that was a delta function in momentum. These are perhaps most

extreme functions possible by comparison to the above, but it was clear these

choices provided an even spread in their corresponding dual spaces.

While the form described by (55) was attempted and found to be

successful, the form of (51) seemed suggestive of a deposit in momentum

space. Such a deposit was attempted, and the FFT of the plasma code was used

to solve for the wavefunction in position space. Some of the same deposit

functions used for the position basis collector methods were used for the

momentum basis here, but it was clear that such solutions were not enough to

adequately describe the momentum ket given by (51). Part of the problem was

168

that the final momentum of the particle was usually in between grids in

momentum space, so the proper representation on a discretized momentum

space required a wide deposit of the form sin(πp)/ p . This wide momentum

deposit was constructed and tested. While this depositor met with some

success, it was not pursued further because it quickly became at least as costly

as depositing a wave throughout all space. It became clear, finally, that a wave

deposited throughout all space was the solution that provided the best results.

In the course of this work, some discussion was encountered concerning

the physical justification of a particle affecting all space. A wave arising from a

path is analogous to how a ray of light hitting a wall represents an entire

wavefront impinging on the surface. At a moment in time, the surface receives

light at a distribution of phase depending on the angle of incidence. In this case,

the final wavefunction receives the virtual classical particle in an identical

distribution of phase depending on its momentum. The paths could be thought

to represent the flow of entire wavefronts, rather than simply particles.

Conceptual worries about local effects being maintained despite a

completely nonlocal deposit were pacified in light of how close to perfection

this solution was. Later, the optimization technique described in Section C of

Chapter III was developed, and the wavefunction reconstruction routine has

been largely unchanged ever since.

169

IX. Appendix B

- Quantum PIC Source Code

A. Source Code

To provide a concrete understanding of the structure of the quantum

PIC code, its source code is provided here. These listings, in Fortran, contain a

large amount of dead code that is switched on and off via comments or if tests,

allowing the same code to be used for a variety of experiments.

B. Main Program Loop

 program babycq1
 use plib
 implicit none
! indx = exponent which determines length in x direction,
nx=2**indx

170

! npx = number of background particles distributed in x
direction
! npxb = number of beam particles per species in x direction
! nspecies = number of species (e.g., quantum particles)
! for monte carlo quantum: np/dx > 250
! for grided quantum: np/dx > 2*h (=128)
 integer :: indx, npx, npxb, nspecies
! parameter(indx = 7, npxb = 0, nspecies = 1)
! parameter(indx = 7, npxb = 0, nspecies = 2)
! parameter(indx = 8, npxb = 0, nspecies = 16)
! parameter(indx = 8, npxb = 0, nspecies = 16)
 parameter(indx = 11, npxb = 0, nspecies = 64)
! parameter(indx = 7, npx = 20480, npxb = 0,
nspecies = 1)
! parameter(indx = 7, npx = 20480, npxb = 0,
nspecies = 2)
! parameter(indx = 8, npx = 81920, npxb = 0,
nspecies = 1)
! parameter(indx = 8, npx = 81920, npxb = 0,
nspecies = 16)
! parameter(indx = 11, npx = 409600, npxb = 0,
nspecies = 1)
! parameter(indx = 14, npx = 4096000, npxb = 409600,
nspecies =1)
! parameter(indx=18, npx = 40960000, npxb = 4096000,
nspecies = 1)
! tend = time at end of simulation, in units of plasma
frequency
! dt = time interval between successive classical
calculations
 real :: tend, dt, tcptq, vscale, sigma, div2sigsq
 parameter(tend = 104.000, dt = 0.20000e+00)
 parameter(tcptq = 32, vscale = tcptq)
! parameter(tcptq = 32, vscale = 32.0)

 parameter(sigma = 0.5, div2sigsq =
0.5/(sigma*sigma))
! vtx = thermal velocity of electrons in x direction
! vdx = drift velocity of beam electrons x direction
! vtdx = thermal velocity of beam electrons in x direction
 real :: vtx, vdx, vtdx, avdx
 parameter(vtx = 1.000, vdx = 0.000, vtdx = 1.00)
! avdx = absolute value of drift velocity of beam electrons
x direction
 parameter(avdx = 5.000)
! npx is determined by maintaining a particle density and a
spread in phase space
 parameter(npx = (2**indx)*(2**indx))
! parameter(npx = 10*(2**indx)*(vtx*dt*tcptq*2))
! indnvp = exponent determining number of real or virtual

171

processors
! indnvp must be < indx
! idps = number of partition boundaries
! idimp = dimension of phase space = 2
! mshare = (0,1) = (no,yes) architecture is shared memory
 integer :: indnvp, idps, idimp, mshare, np, nx, nxh,
nloop
 parameter(indnvp = 4, idps = 2, idimp = 8,
mshare = 0)
! np = total number of electrons in simulation
 parameter(np=npx+npxb)
 parameter(nx=2**indx,nxh=nx/2)
! nloop = number of time steps in simulation
 parameter(nloop=tend*vscale/(tcptq*dt)+.0001)
! nvp = number of real or virtual processors, nvp =
2**indnvp
! nblok = number of particle partitions
 integer :: nvp, nblok
 parameter(nvp=2**indnvp,nblok=1+mshare*(nvp-1))
! npmax = maximum number of particles in each partition
! nxpmx = maximum size of particle partition, including
guard cells.
 integer :: npmax, nxpmx
 parameter(npmax=(np/nvp)*1.21+250,nxpmx=(nx-1)/nvp+4)
! kxp = number of complex grids in each field partition
! kblok = number of field paritions
 integer :: kxp, kblok, nbmax, ntmax
 parameter(kxp=(nxh-1)/nvp+1,kblok=1+mshare*(nxh/kxp-
1))
 integer :: kxpc, kblokc
 parameter(kxpc=(nx-1)/nvp+1,kblokc=1+mshare*(nx/kxpc-
1))
! nbmax = size of buffer for passing particles between
processors

parameter(nbmax=1+(2*(npx*vtx+npxb*vtdx)+1.4*npxb*avdx)*dt/n
x)
! ntmax = size of hole array for particles leaving
processors
 parameter(ntmax=2*nbmax)
 complex wfcn, wf, wfl, wfl2, ffc, fc, qc, pc, sct

 complex qkinH, qptot, wkinH, wfp
! wfcn(j,l,k) = wavefunction at j of species l in partition
k
 dimension wfcn(nxpmx,nspecies,nblok)
 real :: pi, twopi, planck, planckbar, divhbar
 parameter(pi=3.1415962535897932384626433832795028)
 parameter(twopi=6.28318530717959)
! planck = Planck's constant

172

 parameter(planck=2*tcptq)
! parameter(planck=64)

parameter(planckbar=planck/(2*pi),divhbar=2*pi/planck)
 complex :: wmult
 real :: part, q, fx, pt
 common /large/ part
! part(1,n,l,k) = position x of particle n of species l in
partition k
! part(2,n,l,k) = velocity vx of particle n of species l in
partition k
! part(3,n,l,k) = action S of particle n of species l in
partition k
! part(4,n,l,k) = magnitude of particle n's piece of species
l in partition k
! part(5,n,l,k) = phase of particle n's piece of species l
in partition k
! part(6,n,l,k) = det of step i of particle n of species l
in partition k
! part(7,n,l,k) = det of step i-1 of particle n of species l
in partition k
 dimension part(idimp,npmax,nblok)
! dimension part(idimp,npmax,nspecies,nblok)
! integer :: btree
! dimension btree(4, npmax, nspecies, nblok)
! q(j,l,k) = charge density l at grid point jj, where jj = j
+ noff(k) - 1
! fx(j,l,k) = force/charge l at grid point jj, that is
convolution of
! electric field over particle shape, where jj = j + noff(k)
- 1
 dimension q(nxpmx,nspecies,nblok),
fx(nxpmx,nspecies,nblok)
 dimension pt(nxpmx,nspecies,nblok)
! qc(j,k) = complex charge density for fourier mode jj - 1
! fc(j,k) = complex force/charge for fourier mode jj - 1
! where jj = j + kxp*(k - 1)
 dimension qc(kxp,kblok), fc(kxp,kblok)
 dimension pc(kxp,kblok)
! ffc = complex form factor array for poisson solver
 dimension ffc(kxp,kblok)
! mixup = array of bit reversed addresses for fft
! sct = sine/cosine table for fft
 integer :: mixup
 dimension mixup(kxp,kblok), sct(kxp,kblok)
 integer, dimension(kxpc,kblokc) :: mixupc
 complex, dimension(kxpc,kblokc) :: sctc
! edges(1,k) = left boundary of particle partition k
! edges(2,k) = right boundary of particle partition k

173

 real :: edges
 dimension edges(idps,nblok)
! nxp(k) = number of primary gridpoints in particle
partition k.
! noff(k) = leftmost global gridpoint in particle partition
k.
 integer :: nxp, noff, npp, nps
 dimension nxp(nblok), noff(nblok)
! noffglob(k) = leftmost global gridpoint in processor k.
 integer, dimension(nvp) :: noffglob
! nxpglob(k) = number of primary gridpoints in processor k.
 integer, dimension(nvp) :: nxpglob
! npp(l,k) = number of particles of species l in partition k
! nps(l,k) = starting address of particles of species l in
partition k
 dimension npp(nspecies, nblok), nps(nspecies, nblok)
! sbufl = buffer for particles being sent to left processor
! sbufr = buffer for particles being sent to right processor
 real :: sbufl, sbufr, rbufl, rbufr
 dimension sbufl(idimp,nbmax,nblok),
sbufr(idimp,nbmax,nblok)
! rbufl = buffer for particles being received from left
processor
! rbufr = buffer for particles being received from right
processor
 dimension rbufl(idimp,nbmax,nblok),
rbufr(idimp,nbmax,nblok)
! ihole = location of holes left in particle arrays
 integer :: ihole, jsl, jsr, jss
 dimension ihole(ntmax,nblok)
! jsl(idps,k) = number of particles going left in particle
partition k
! jsr(idps,k) = number of particles going right in particle
partition k
 dimension jsl(idps,nblok), jsr(idps,nblok)
! jss(idps,k) = scratch array for particle partition k
! scr(idps,k) = scratch array for particle partition k
 real :: scr
 dimension jss(idps,nblok), scr(idps,nblok)
 991 format (5h t = ,i7)
 992 format (19h * * * q.e.d. * * *)
 993 format (34h field, kinetic, total energies = ,3e14.7)
! qme = charge on electron, in units of e
! ax = half-width of particle in x direction
! data qme,ax /-1.,.8666667/
 real :: qme, ax
 data qme,ax /-1.00,.8666667/ !
! data qme,ax /-0.12500000,.8666667/ !
! data qme,ax /-0.09973557,.8666667/ ! sqrt(1/8π)/2

174

! data qme,ax /-0.1994711402,.8666667/ ! sqrt(1/8π)
! data qme,ax /-0.25,.8666667/
! data qme,ax /-0.5,.8666667/
! data qme,ax /-1.0,.8666667/
 integer :: nproc, lgrp, mreal, mint, mcplx
 common /pparms/ nproc, lgrp, mreal, mint, mcplx

 integer, parameter :: cxexpsize = 1024 ! table for
wdeposit
 complex, dimension(cxexpsize+1+cxexpsize+1) :: cxexpt

 integer, parameter :: deltarestartindex = 10 !
number of quantum pushes between rewrites

! Variables used in main
 integer :: kstrt, k, l, itime, idproc, j, joff, isign,
nxp3, lt
 integer :: kw, kt, nextrestartindex, ierr, msid, lstat
 parameter (lstat = 8)
 integer, dimension(lstat) :: istatus
 real, dimension(nspecies) :: initialPosition,
initialMomentum
 real :: anx, qtme, affp, zero, qi0, etime, we, pkx,
wke, wt
 real :: bcoeff, ccoeff, dcoeff, avex, avesqx, wptH,
qptH, qiw
 real :: avedet, avedet2
 complex :: tempCx

! initialize for parallel processing
! write (6,*) 'initializing PP'
 print *, 'initializing PP'
 call ppinit(idproc,nvp)
 open(unit=6,file='output1-
'//char(48+(idproc/10))//char(48+idproc-10*(idproc/10)), &
 &
FORM="FORMATTED",STATUS="UNKNOWN",POSITION="APPEND")

 kstrt = idproc + 1
! initialize timer
 call timera(-1,'total ',etime)
! initialize constants
 itime = 0
 anx = float(nx)
 qtme = qme*dt
 affp = anx/float(np*nspecies)
 zero = 0.

 cxexpt(1) = -1

175

! sigma = sqrt(0.15) = 0.387298335
! sigH = sigma+0.02
! sigL = sigma-0.02
! wLastH = 0.

 bcoeff = -exp(-div2sigsq)/(1+exp(-4*div2sigsq))
 ccoeff = 0.0
 bcoeff = 0.0

 if (.false.) then

 bcoeff = exp(-div2sigsq)*((1+exp(-2*div2sigsq))**2)*&
 &(exp(-2*div2sigsq)-1-exp(-4*div2sigsq))/&
 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+exp(-

8*div2sigsq)+exp(-12*div2sigsq))
 ccoeff = exp(-2*div2sigsq)/&
 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+exp(-

8*div2sigsq)+exp(-12*div2sigsq))
 end if

 dcoeff = 0.0

 if (.false.) then

 bcoeff = -exp(-div2sigsq)*(1+exp(-2*div2sigsq)+exp(-
4*div2sigsq)+exp(-6*div2sigsq)&

 &+2*exp(-8*div2sigsq)+3*exp(-10*div2sigsq)+2*exp(-
12*div2sigsq))/(&

 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+2*exp(-
8*div2sigsq)+&

 &2*exp(-10*div2sigsq)+exp(-12*div2sigsq)+exp(-
16*div2sigsq))&

 &*(1+exp(-8*div2sigsq)))
 ccoeff = exp(-2*div2sigsq)*(1+exp(-2*div2sigsq)+exp(-

4*div2sigsq))/&
 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+2*exp(-

8*div2sigsq)+&
 &2*exp(-10*div2sigsq)+exp(-12*div2sigsq)+exp(-

16*div2sigsq))
 dcoeff = -exp(-3*div2sigsq)/&
 &(1+exp(-4*div2sigsq)+2*exp(-6*div2sigsq)+3*exp(-

8*div2sigsq)+&
 &2*exp(-10*div2sigsq)+2*exp(-12*div2sigsq)+3*exp(-

16*div2sigsq))
 end if

! calculate partition variables
 call dcomp1(edges,nxp,noff,nx,kstrt,nvp,idps,nblok)
! for distributed mpi - assuming fixed partition edges
 call
MPI_ALLGATHER(noff,1,mint,noffglob,1,mint,lgrp,ierr)

176

 call
MPI_ALLGATHER(nxp,1,mint,nxpglob,1,mint,lgrp,ierr)
! write (6,*) 'noff(:)',noffglob, 'nxp(:)',nxpglob

 if (.true.) then
 noffglob(1+idproc) = noff(1)
 nxpglob(1+idproc) = nxp(1)
 do kw=0,nvp-1 ! This loop is structured this
way so we don't get a
 if (kw.gt.0) then ! compiler error: underflowed
register count
 kt = 1 + idproc - kw
 if (kt.lt.1) kt = kt + nvp
 ! recieve into the right spot
 call MPI_IRECV(noffglob(kt),1,mint,kt-
1,kw,lgrp,msid,ierr)
 kt = 1 + idproc + kw
 if (kt.gt.nvp) kt = kt - nvp
 ! send data to the one who needs it
 call MPI_SEND(noff(1),1,mint,kt-1,kw,lgrp,ierr)
 call MPI_WAIT(msid,istatus,ierr)

 kt = 1 + idproc - kw
 if (kt.lt.1) kt = kt + nvp
 ! recieve into the right spot
 call MPI_IRECV(nxpglob(kt),1,mint,kt-
1,kw,lgrp,msid,ierr)
 kt = 1 + idproc + kw
 if (kt.gt.nvp) kt = kt - nvp
 ! send data to the one who needs it
 call MPI_SEND(nxp(1),1,mint,kt-1,kw,lgrp,ierr)
 call MPI_WAIT(msid,istatus,ierr)

 end if
 end do
! write (6,*) 'noff(:)',noffglob, 'nxp(:)',nxpglob
 end if

! prepare fft tables
 isign = 0
 call
pfft1r(qc,fc,isign,mixup,sct,indx,kstrt,kxp,kblok)
 call
pfft1c(qc,fc,isign,mixupc,sctc,indx,kstrt,kxpc,kblokc)
! calculate form factors
 call ppois1
(qc,fc,isign,ffc,ax,affp,we,nx,kstrt,kxp,kblok)
! initial density profile and maxwellian velocity

177

distribution
! background electrons
 write (6,*) 'init background es'
 do 120 k = 1, nblok
 do l=1,nspecies
 nps(l,k) = 1
 npp(l,k) = 0
 enddo
 nxp3 = nxp(k) + 3
 120 continue
! if (npx.gt.0) call pistr1
(part,edges,npp,nps,vtx,zero,npx,nx, &
! &idimp,npmax,nblok,idps,nspecies)
! beam electrons
 do 140 k = 1, nblok
 do l=1,nspecies
 nps(l,k) = npp(l,k) + 1
 enddo
 140 continue
! if (npxb.gt.0) call pistr1
(part,edges,npp,nps,vtdx,vdx,npxb,nx, &
! &idimp,npmax,nblok,idps,nspecies)

! Initialize wavefunctions as normalized Gaussians moving at
various velocities
 write (6,*) 'Initializing wavefunctions'

 if (.true.) then
 call
classicalICs(initialPosition,initialMomentum,nspecies,nx, &
 & planck)
 end if

 qi0 = sqrt(0.01/pi)
 do k=1,nblok
! nxp3 = nxp(k) + 3
 joff = noff(k) - 2
 do l=1,nspecies
 pkx = twopi*initialMomentum(l)
! pkx = 2*pi*(8.5-l)*2/(nspecies*6)
! pkx = 2*pi*0/nx
! pkx = -0.06125*(l-1.5)
! pkx = 0.5 - 1.1*2.0*(l-0.5*(1+nspecies))/nspecies
! pkx = 0
! print *, 'first zero ',8-joff
 do j=1,nxpmx
 if (.false.) then
 wfcn(j,l,k) = exp(-0.25/(4**2)*(j + joff -
(l+0.5)*nx/(nspecies+2) + 0)**2) *&

178

 &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
 end if

 if (.true.) then
 wfcn(j,l,k) = exp(-0.25/(4**2)*(j + joff -
initialPosition(l))**2) *&
 &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
 end if

 if (.false.) then
 wfcn(j,l,k) = exp(-0.01*(j + joff -
((l)*nx/(nspecies+1) + 0))**2) *&
 &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
 end if

 if (.false.) then
 wfcn(j,l,k) = sin((j + joff -
2.0)*(1.0)*twopi*0.5/(nx-4))*&
 &exp(-0.0001*(j + joff - ((l)*nx/(nspecies+1) + 0)
)**2) *&
 &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
 end if

 if (.false.) then
 wfcn(j,l,k) = sin((j + joff -
2.0)*(l+6)*twopi*0.5/(nx-4)) * qi0
 end if

 if (.false.) then
 tempCx = 0
 do lt=1,5
 tempCx = tempCx + sin((j + joff -
2.0)*(lt)*twopi*0.5/(nx-4)) *&
 & (1.0/lt) * cmplx(cos(twopi*(0.2*lt)*(2*l-3)),
sin(twopi*(0.2*lt)*(2*l-3)))
 end do
 wfcn(j,l,k) = tempCx * qi0
 end if

 if (.false.) then
 wfcn(j,l,k) = sin((j + joff -
2.0)*(1.0)*twopi*0.5/(nx-4))*&
 &exp(-0.01*(j + joff - ((l+3)*nx/(nspecies+6) + 0)
)**2) *&
 &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
 end if

 if (.false.) then
 wfcn(j,l,k) = exp(-0.01*(j + joff -

179

((l+3)*nx/(nspecies+5)))**2) *&
 &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
 end if

 if (.false.) then
 if (j.eq.1) print *,
(twopi/(256.0*(2.0**(1.0/3))))
 wfcn(j,l,k) = exp(-
(twopi/(256.0*(2.0**(1.0/3))))*(j + joff -
((l+1)*nx/(nspecies+3)))**2) *&
 &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff)))
 end if

 if (.false.) then
 if (j.eq.1) print *,
(twopi/(256.0*(2.0**(1.0/3))))
 wfcn(j,l,k) = exp(-
(twopi/(256.0*(2.0**(1.0/3))))*(j + joff -
((l+1)*nx/(nspecies+3)))**2) *&
 &qi0 * cmplx(cos(pkx*(j+joff)), sin(pkx*(j+joff))) * (j
+ joff - (nx/2))
 end if

 if (.false.) then
 wfcn(j,l,k) = cmplx(cos(pkx*(j+joff)),
sin(pkx*(j+joff))) / nx
 end if

 if (.false.) then
 if ((j + joff).eq.((l+2)*nx/(nspecies+1+4)))
then
 wfcn(j,l,k) = 1.0
 else
 wfcn(j,l,k) = 0
 end if
 end if

 if (.false.) then
 qi0 = (j + joff - 1 - nx/2)
 pkx = qi0*qi0*divhbar*(1.0/8.0)
 wfcn(j,l,k) = exp(-
(1.0/8.0)*0.5*divhbar*qi0**2) * &
 &(1 + qi0 *(.25 - 0.02*((4*pkx-20)*pkx+15) +
0.004*(((8*pkx-84)*pkx+210)*pkx-105)))
! &(1 + 0*qi0 *(0.75 - 0.2*((4*pkx-20)*pkx+15) +
0.01*(((8*pkx-84)*pkx+210)*pkx-105)))
 end if

! write (6,*) wfcn(j,l,k)

180

 enddo
 enddo
 enddo

! calculate background ion density
! qi0 = -qme/affp
! wmult = sqrt(divhbar * vscale / (2 * pi * dt *
tcptq)) * nx / np &
! &* cmplx(cos(0.25*pi),sin(-0.25*pi))
! wmult = tcptq * vtx * dt * nx / real(np) &
! &* cmplx(cos(0*pi),sin(-0*pi))
 wmult = nx / (real(np)) &
 &* cmplx(cos(0*pi),sin(-0*pi))
 write (6,*) 'npx= ', npx, ' h= ', planck
 write (6,*) wmult,divhbar, bcoeff, ccoeff, dcoeff
 write (6,*) 'noff(:)',noffglob, 'nxp(:)',nxpglob

 do k = -5, 4
 qiw = 0.5*k + 0.2
 j = qiw + .5
 print *, qiw, j
 end do

 write (6,*) 'opening wavefunction file'

 nextrestartindex = deltarestartindex
 if (prepareifrestarting(nloop,nspecies,nx,idproc,nvp,&
 & wfcn,noffglob,nxpglob,nblok,nxpmx,itime)) then

 nextrestartindex = nspecies * itime +
deltarestartindex/2
 else
 if (idproc.eq.0) then

!Open wavefunction file
 open (unit=9,file="outputW",status="REPLACE")
 write (9,*) 'NSTEPS=', nloop
 write (9,*) 'NQ=',nspecies
 write (9,*) 'NX=',nx
 write (9,*) 'START'

 call openbinarywf(nloop,nspecies,nx,idproc,nvp)

 end if
 end if

!
! * * * start main iteration loop * * *

181

!
 write (6,*) 'begin data'
 500 if (nloop.le.itime) go to 2000
 if (kstrt.eq.1) write (6,991) itime
 print *,'tstep',itime,'/',nloop
 wke = 0.

 qkinH = 0.
 qptH = 0.
 qptot = 0.

! sigma = 0.5*(sigH+sigL)
! write (6,*) 'sigma = ', sigma
! div2sigsq = 0.5/(sigma*sigma)

 do k = 1, nblok
 do j = 1, nxpmx
 do l=1,nspecies
! initialize charge density to zero
 q(j,l,k) = 0.0
 enddo
 enddo
 enddo
! deposit charge using qme |wfcn|^2 leaving out self-
energy
 do 1190 k = 1, nblok
! only where we need to
 do 1180 j = 1, nxp(k)
 do l=1,nspecies
 qiw = qme*(real(wfcn(j+1,l,k))**2 +
aimag(wfcn(j+1,l,k))**2)
 do lt=1,nspecies
 if (l.ne.lt) then
 q(j+1,lt,k) = q(j+1,lt,k) + qiw
 end if
 enddo
 enddo
 1180 continue
 1190 continue

 do l=1,nspecies
 print *,'Computing Fields'

! transform charge to fourier space
 isign = -1
! copy data from particle to field partition, and add up
guard cells
 call cppfp1
(q,qc,isign,scr,kstrt,nvp,nxpmx,nblok,kxp,kblok,idps, &
 &l,nspecies)

182

 call
pfft1r(qc,fc,isign,mixup,sct,indx,kstrt,kxp,kblok)
! calculate force/charge in fourier space
 call ppois1
(qc,fc,isign,ffc,ax,affp,we,nx,kstrt,kxp,kblok)
! transform force/charge to real space
 isign = 1
 call ppois1
(qc,pc,isign,ffc,ax,affp,we,nx,kstrt,kxp,kblok)
 call
pfft1r(fc,qc,isign,mixup,sct,indx,kstrt,kxp,kblok)
 call
pfft1r(pc,qc,isign,mixup,sct,indx,kstrt,kxp,kblok)
! copy data from field to particle partition, and copy to
guard cells
 call cppfp1
(fx,fc,isign,scr,kstrt,nvp,nxpmx,nblok,kxp,kblok,idps,&
 &l,nspecies)
 call cppfp1
(pt,pc,isign,scr,kstrt,nvp,nxpmx,nblok,kxp,kblok,idps,&
 &l,nspecies)
! particle push and charge density update
! call timera(-1,'push ')

 if (.true.) call
addexternalpot(fx,pt,l,noff,itime,qtme,dt,vscale,tcptq,nxpmx
,nblok,nspecies,nx)

 if (.true.) then
 print *,'Preparing particles'
! initialize particles
 call
pprepw(wfcn,part,npp,noff,nxp,vtx,vscale,divhbar,dt, &

&l,sigma,nx,npx,idimp,npmax,nblok,nxpmx,nspecies,idproc,nvp)

 print *,'Pushing particles'
! push particles
! if (.false.) then
! print *,'preparing btree'
! call
preparebt(part,btree,npp,noff,idimp,npmax,nblok,nxpmx, &
! &l,nspecies)
! end if
 do k=1,tcptq
! if (.false.) then
! print *,' push'
! call
ppush1bt(part,fx,npp,noff,qtme,dt,wke,idimp,npmax,nblok,nxpm

183

x, &
! &nx,l,nspecies,pt,btree)
! else
 call
ppush1(part,fx,npp,noff,qtme,dt,wke,idimp,npmax,nblok,nxpmx,
&
 &nx,l,nspecies,pt)
! end if
! move particles into appropriate spatial regions
 call pmove1
(part,edges,npp,sbufr,sbufl,rbufr,rbufl,ihole,jsr,jsl,&

&jss,nx,kstrt,nvp,idimp,npmax,nblok,idps,nbmax,ntmax,ierr,l,
&
 &nspecies)
 enddo

 print *,'Depositing wavefunction'
! push wavefunctions
 call
wdeposit(wfcn,part,npp,noff,nxp,indx,l,divhbar,wmult,dt,
&

&div2sigsq,idimp,npmax,nblok,nvp,idproc,nxpmx,nspecies,vscal
e, &
 &noffglob,nxpglob,kxpc,kblokc,mixupc,sctc,cxexpt)

 else

 qi0 = sqrt(0.02/pi)
 do k=1,nblok
 joff = noff(k) - 1
 pkx = 1.0*(l-1.0)
 do j=1,nxpmx
 wfcn(j,l,k) = exp(-
(0.01/cmplx(1,(1+itime)*dt*planckbar*0.02))*&
 &(j + joff - l*nx/(nspecies+1))**2) *qi0
 enddo
 enddo

 end if

 print *,'Running diagnostics'
! Run diagnostics and renormalize
! qi0 = qme
 call
wdiagn(wfcn,noff,nxp,qiw,avex,avesqx,wkinH,wptH,wfp,pt,&

&planckbar,div2sigsq,vscale,l,npmax,nblok,nxpmx,nspecies,idp

184

roc,nvp,&
 &idimp,part,npp,avedet,avedet2,nx,qme)

 write (6,*) l,' size is ',qiw,' at ',avex,' width
',sqrt(avesqx-avex*avex)
 write (6,*) l,' avedet is ',avedet,' width
',sqrt(avedet2-avedet*avedet)
 write (6,*) ' kin, pot, H, p
',wkinH,wptH,wkinH+wptH,wfp

 if (.false.) then
 write (9,*) itime, l
 do k = 1, nblok
 do j = 1, nxp(k)
 write (9,*) wfcn(j+1,l,k)
 end do
 write (8) wfcn(:,l,k)
 end do

 endfile 9
 backspace 9
 else

 call

wcollatendump(wfcn,noffglob,nxpglob,nblok,nxpmx,itime,l,nspe
cies,idproc,nvp)

 end if

 qkinH = qkinH + wkinH
 qptH = qptH + wptH
 qptot = qptot + wfp

 do k=1,nblok

 write (6,*) k, npp(l,k)
 enddo

 endfile 6
 backspace 6

! call flush(9)

 if (.not.(real(wfcn(2,1,1)).gt.real(wfcn(3,1,1))))

then
 if (.not.(real(wfcn(2,1,1)).lt.real(wfcn(3,1,1))))

then
 if (.not.(real(wfcn(2,1,1)).eq.real(wfcn(3,1,1))))

then
! we might have a NaN

 write (6,*) 'NaN?'

185

itime = nloop
call MPI_ABORT(lgrp, 255, ierr)
exit

 endif
 endif
 endif

 end do

 if (ierr.eq.1) then
 write (6,*) 'init background es'
 do k = 1, nblok
 do l=1,nspecies
 nps(l,k) = 1
 npp(l,k) = 0
 enddo
 nxp3 = nxp(k) + 3
 enddo
 if (npx.gt.0) call pistr1
(part,edges,npp,nps,vtx,zero,npx,nx, &
 &idimp,npmax,nblok,idps,nspecies)
 endif

! call timera(1,'push ',etime)
! energy diagnostic, now meaningless
 wt = we + wke
 if (kstrt.eq.1) then

 write (6,993) we, wke, wt
write (6,*) 'qkin, qpt, Htot, ptot', qkinH, qptH,

qkinH+qptH, qptot
 endif

 if ((itime*nspecies).ge.nextrestartindex) then
 nextrestartindex = itime*nspecies +

deltarestartindex

 if (idproc.eq.0) then
! flush does not exist, it seems
 endfile 9
 backspace 9

! endfile 8
! backspace 8
 call fuflush()

 write (6,*) 'Writing restart info file'
 endfile 6
 backspace 6

186

 open (unit=11, file='restartinfo',
status="REPLACE")

 write (11,*) itime
 write (11,*) nextrestartindex

 endfile 11

 close(unit=11)
 end if

 print *, ' Press Command-. to stop simulation'

 end if

 itime = itime + 1
 go to 500
 2000 continue
!
! * * * end main iteration loop * * *
!
 if (idproc.eq.0) then
 write (9,*) 'END'

 call fuclose()

 if (itime.ge.nloop) then ! it's the end, protect the
data
 open (unit=11, file='restartinfo',
status="REPLACE")

 write (11,*) itime
 write (11,*) -1

 close(unit=11)
 end if

 end if

 if (kstrt.eq.1) write (6,992)
 call timera(1,'total ',etime)
 call ppexit
! pause
 stop
 end program

Listing A. A listing of the main program of the quantum PIC code.

187

C. External Potential

 subroutine
addexternalpot(fx,pt,l,noff,itime,qtm,dt,vscale,tcptq,nxpmx,
nblok,nspecies,nx)
! for 1d code, this subroutine adds an external potential to
the pt and fx arrays
! in space, with periodic boundary conditions, for
distributed data.
! fx(j,k) = force/charge at grid point jj, that is
convolution of
! electric field over particle shape, where jj = j + noff(k)
- 1
! noff(k) = leftmost global gridpoint in particle partition
k.
! qtm = particle charge/mass ratio times dt
! dt = time interval between successive calculations
! nblok = number of particle partitions.
! nxpmx = maximum size of particle partition, including
guard cells.
! scalar version with spatial decomposition
 implicit none
 integer :: l, itime, nblok, nxpmx, nspecies, nx
 real :: qtm, dt, vscale, tcptq
 real, dimension(nxpmx,nspecies,nblok) :: fx, pt
 integer, dimension(nblok) :: nxp, noff
 real :: omegasq, slope, adjustment, rtemp, height
 integer :: j, k, joff, xt, width
 parameter(omegasq = (1.0/8.0)**2, slope = 1.0/4.0,
width = 4, height=16.0)

! This accounts for the unusual units that pt and fx take
 adjustment = dt/(qtm*(vscale**2))

 do k=1,nblok
 joff = noff(k) - 2
 do j=1,nxpmx
 if (.false.) then
! ! Simple Harmonic Oscillator
 xt = j + joff - nx/2
 pt(j,l,k) = pt(j,l,k) +
adjustment*0.5*omegasq*(xt**2)
 fx(j,l,k) = fx(j,l,k) - adjustment*omegasq*xt
 end if

 if (.false.) then
! ! time dependent ramp

188

 if ((itime*dt).ge.1) then
 xt = j + joff - nx/2
 rtemp = -1*exp(-0.25*(itime*dt-1))
 pt(j,l,k) = pt(j,l,k) + adjustment*rtemp*xt
 fx(j,l,k) = fx(j,l,k) - adjustment*rtemp
 end if
 end if

 if (.false.) then
! ! Triagular barrier or well
 xt = (j + joff - nx/2)
 if (abs(xt).le.width) then
 if (xt.lt.0) then
 pt(j,l,k) = pt(j,l,k) +
adjustment*slope*(xt+width)
 fx(j,l,k) = fx(j,l,k) - adjustment*slope
 else
 pt(j,l,k) = pt(j,l,k) +
adjustment*slope*(width-xt)
 fx(j,l,k) = fx(j,l,k) + adjustment*slope
 end if
 end if
 end if

 if (.false.) then
! ! Rectangular barrier or well
 xt = (j + joff - nx/2)
 if (abs(xt).le.width) then
 if (abs(xt).gt.(width-2)) then
 if (xt.lt.0) then
 pt(j,l,k) = pt(j,l,k) +
adjustment*height*0.5*(xt+width)
 fx(j,l,k) = fx(j,l,k) -
adjustment*height*0.5
 else
 pt(j,l,k) = pt(j,l,k) +
adjustment*height*(width-xt)
 fx(j,l,k) = fx(j,l,k) +
adjustment*height*0.5
 end if
 else
 pt(j,l,k) = pt(j,l,k) + adjustment*height
 end if
 end if
 end if

 if (.false.) then
! Side walls ?
 xt = (j + joff - nx/2)

189

 if (abs(xt).ge.(nx/2 - 3)) then
 if (xt.lt.0) then
 pt(j,l,k) = pt(j,l,k) -
adjustment*64*0.5*((nx/2 - 3) + xt)
 fx(j,l,k) = fx(j,l,k) + adjustment*64*0.5
 else
 pt(j,l,k) = pt(j,l,k) -
adjustment*64*0.5*((nx/2 - 3) - xt)
 fx(j,l,k) = fx(j,l,k) - adjustment*64*0.5
 end if
 end if
 end if

 if (.false.) then
! ! Simple Harmonic Oscillator potentials
 xt = j + joff - l*nx/(nspecies+1)
 pt(j,l,k) = pt(j,l,k) +
adjustment*0.5*omegasq*(xt**2)
 fx(j,l,k) = fx(j,l,k) - adjustment*omegasq*xt
 end if

 if (.false.) then
! ! 1-D atom potentials
 xt = j + joff - nx/2
 if (xt.lt.0) then
 pt(j,l,k) = pt(j,l,k) -
adjustment*slope*(xt)
 fx(j,l,k) = fx(j,l,k) + adjustment*slope
 else if (xt.gt.0) then
 pt(j,l,k) = pt(j,l,k) +
adjustment*slope*(xt)
 fx(j,l,k) = fx(j,l,k) - adjustment*slope
 end if
 end if

 enddo
 enddo

 end subroutine

Listing B. The external potential routine.

D. Particle Preparation

190

 subroutine
pprepw(wfcn,part,npp,noff,nxp,vtx,vscale,divhbar,dt, &

&l,sigma,nx,npx,idimp,npmax,nblok,nxpmx,nspecies,idproc,nvp)
! for 1d code, this subroutine stores wavefunction density
! using second-order spline interpolation, with periodic
boundaries
! and distributed data into the particle array.
! density is approximated by values at the nearest grid
points
! q(n)=qm*(.75-dx**2), q(n+1)=.5*qm*(.5+dx)**2, q(n-
1)=.5*qm*(.5-dx)**2
! where n = nearest grid point and dx = x-n
! part(1,n,l,k) = position x of particle n of species l in
partition k
! q(j,l,k) = species l density at grid point jj, where jj =
j + noff(k)-1
! wfcn = given complex valued wavefunction
! part = particle data
! npp(l,k) = number of particles of species l in partition k
! noff(k) = leftmost global gridpoint in particle partition
k.
! idimp = size of phase space + action + old position
! npmax = maximum number of particles in each partition
! nblok = number of particle partitions.
! nvp = number of (virtual) processors.
! nxpmx = maximum size of particle partition, including
guard cells.
! complex scalar version with spatial decomposition
 implicit none
! common block for parallel processing
 integer nproc, lgrp, lstat, mreal, mint, mcplx
! lstat = length of status array
 parameter(lstat=8)
! lgrp = current communicator
! mreal = default datatype for reals
 common /pparms/ nproc, lgrp, mreal, mint, mcplx

 integer :: npp, noff, l, idimp, npmax, nblok, nxpmx,
nspecies
 integer :: nx, npx, idproc, nvp
 real :: part, vtx, vscale, divhbar, dt, sigma, bcoeff,
ccoeff, dcoeff
 complex, dimension(nxpmx,nspecies,nblok) :: wfcn
 dimension part(idimp,npmax,nblok)
! dimension part(idimp,npmax,nspecies,nblok)
 dimension npp(nspecies,nblok), noff(nblok)
 integer, dimension(nblok) :: nxp
 complex :: wf, wfr, wfl

191

 real :: dx, siginterp, rtemp, pi
 integer :: k, j, ip, nn, nnoff, kr, kl, msid, istatus,
ierr
 dimension istatus(lstat)
 parameter(pi = 3.1415926535897932384626433832795028)

 siginterp = 0.25/(sigma*sigma)

 if (.true.) then ! zero edges

 if (.false.) then
 ! Broadcast left & right edges
 if (idproc.eq.0) then
 wfl = wfcn(4,l,1)
 end if
 if (idproc.eq.(nvp-1)) then
 wfr = wfcn(-1+nxp(nblok),l,nblok)
 end if

 call MPI_BCAST(wfl,1,mcplx,0,lgrp,ierr)
 call MPI_BCAST(wfr,1,mcplx,nvp-1,lgrp,ierr)

 ! subtract off to make it zero at edges
 wf = (wfl-wfr)/(nx-5)

 write (6,*) 'Left, right, slope', wfl, wfr, wf

 do k = 1, nblok
 nnoff = noff(k) - 4
 do j = 1, nxpmx
 wfcn(j,l,k) = wfcn(j,l,k) + (j + nnoff)*wf - wfl
 end do
 end do

 end if

 if (.false.) then
 if (idproc.eq.0) then
 wfcn(1,l,1) = - wfcn(17,l,1)
 wfcn(2,l,1) = - wfcn(16,l,1)
 wfcn(3,l,1) = - wfcn(15,l,1)
 wfcn(4,l,1) = - wfcn(14,l,1)
 wfcn(5,l,1) = - wfcn(13,l,1)
 wfcn(6,l,1) = - wfcn(12,l,1)
 wfcn(7,l,1) = - wfcn(11,l,1)
 wfcn(8,l,1) = - wfcn(10,l,1)
 wfcn(9,l,1) = cmplx(0.,0.)
! wfcn(2,l,1) = 3 * wfcn(5,l,1) - 8 * wfcn(4,l,1) !
cmplx(0.,0.)

192

! wfcn(3,l,1) = wfcn(5,l,1) - 3 * wfcn(4,l,1) !
make first & second derivatives continuous
! wfcn(4,l,1) = cmplx(0.,0.)
 end if
 if (idproc.eq.(nvp-1)) then
! wfcn(-1+nxp(nblok),l,nblok) = cmplx(0.,0.)
! wfcn(0+nxp(nblok),l,nblok) = wfcn(nxp(nblok)-
2,l,nblok) - 3 * wfcn(nxp(nblok)-1,l,nblok) ! make first &
second derivatives continuous
! wfcn(1+nxp(nblok),l,nblok) = 3 * wfcn(nxp(nblok)-
2,l,nblok) - 8 * wfcn(nxp(nblok)-1,l,nblok) !cmplx(0.,0.)
 wfcn(-7+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-6+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
8,l,nblok)
 wfcn(-5+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
9,l,nblok)
 wfcn(-4+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
10,l,nblok)
 wfcn(-3+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
11,l,nblok)
 wfcn(-2+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
12,l,nblok)
 wfcn(-1+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
13,l,nblok)
 wfcn(0+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
14,l,nblok)
 wfcn(1+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
15,l,nblok)
 wfcn(2+nxp(nblok),l,nblok) = - wfcn(nxp(nblok)-
16,l,nblok)
 wfcn(3+nxp(nblok),l,nblok) = cmplx(0.,0.)
 end if
 end if

 if (idproc.eq.0) then
 wfcn(1,l,1) = cmplx(0.,0.)
 wfcn(2,l,1) = cmplx(0.,0.)
 wfcn(3,l,1) = cmplx(0.,0.)
 wfcn(4,l,1) = cmplx(0.,0.)
 if (.true.) then
 wfcn(5,l,1) = cmplx(0.,0.)
 wfcn(6,l,1) = cmplx(0.,0.)
 if (.false.) then
 wfcn(7,l,1) = cmplx(0.,0.)
 wfcn(8,l,1) = cmplx(0.,0.)
 wfcn(9,l,1) = cmplx(0.,0.)
 wfcn(10,l,1) = cmplx(0.,0.)
! wfcn(11,l,1) = cmplx(0.,0.)
 end if

193

 end if
 end if
 if (idproc.eq.(nvp-1)) then
 if (.true.) then
 if (.false.) then
! wfcn(-7+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-6+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-5+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-4+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-3+nxp(nblok),l,nblok) = cmplx(0.,0.)
 end if
 wfcn(-2+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-1+nxp(nblok),l,nblok) = cmplx(0.,0.)
 end if
 wfcn(0+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(1+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(2+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(3+nxp(nblok),l,nblok) = cmplx(0.,0.)
 end if
 end if

 do k=1,nblok
! copy wfcn to guard cells

 kl = k + idproc - 1
 if (kl.lt.1) then
 kl = kl + nvp
 end if

 kr = k + idproc + 1
 if (kr.gt.nvp) then
 kr = kr - nvp
 end if

! for shared
! wfcn(nxp(kl)+2,l,kl) = wfcn(2,l,k)
! wfcn(nxp(kl)+3,l,kl) = wfcn(3,l,k)
! wfcn(1,l,kr) = wfcn(nxp(k)+1,l,k)
! for mpi distributed
 call MPI_IRECV(wfcn(1,l,k),1,mcplx,kl-
1,0,lgrp,msid,ierr)
 call MPI_SEND(wfcn(nxp(k)+1,l,k),1,mcplx,kr-
1,0,lgrp,ierr)
 call MPI_WAIT(msid,istatus,ierr)

 call MPI_IRECV(wfcn(nxp(k)+2,l,k),2,mcplx,kr-
1,1,lgrp,msid,ierr)
 call MPI_SEND(wfcn(2,l,k),2,mcplx,kl-1,1,lgrp,ierr)
 call MPI_WAIT(msid,istatus,ierr)

194

 end do

! Calculate initial wavefunction by particle
 do k = 1, nblok

! Reinitialize to grid of trajectories; reuse variables
 npp(l,k) = npx/nvp ! Num particles per
block
 nn = nx/nvp - 1 ! Grids per block - 1
 nnoff = npx/nx ! Particles per space
density
 do j = 0, nn ! Loop over position
 do ip = 1, nnoff ! Loop over initial
momentum
 part(1,j*nnoff+ip,k) = j + noff(k)
 part(2,j*nnoff+ip,k) = vtx*(
&
 & 2.0*real(ip-0.5)/real(nnoff) - 1.0)
!! part(2,j*nnoff+ip,k) = vtx*ranorm(0)
 end do
 end do

 nnoff = noff(k) - 2
 do j = 1, npp(l,k)
! find interpolation weights for initial position
 nn = part(1,j,k) + .5
 dx = part(1,j,k) - float(nn)
 nn = nn - nnoff
! Reset action
 part(3,j,k) = 0.0
! wf =((.75 - dx*dx)*wfcn(nn,l,k) +
.5*(wfcn(nn+1,l,k)*(.5 + dx)**2+&
! &wfcn(nn-1,l,k)*(.5 - dx)**2)) *
cmplx(cos(phase),sin(phase))*wmult
! interpolate and save the wavefunction's ...
 wfl = wfcn(nn-1,l,k)
 wf = wfcn(nn,l,k)
 wfr = wfcn(nn+1,l,k)

! magnitude and ...
! part(4,j,k) = ((.75 - dx*dx)*abs(wf)
+.5*(abs(wfr)*(.5 + dx)**2 &
! & + abs(wfl)*(.5 - dx)**2))
 if (.true.) then ! dx.eq.0
 if (.true.) then

 if (.false.) then
 part(4,j,k) = abs(wf) &

195

 & * exp(-0.5*(
((((sigma*vscale*part(2,j,k)*divhbar)**2)**2) &
 & **2)))
 end if

 if (.true.) then
 if (.false.) then
! booster
 rtemp = abs(vscale*part(2,j,k)*divhbar)
 if (rtemp.gt.(1.0)) rtemp = 1.0
 wf = wf * (rtemp * rtemp / (12 *
((sin(rtemp/6))**2) * &
 & (1 + 2 * cos(rtemp/3))))
 end if
! high p taper
 if (.true.) then
 rtemp = 2.5*(abs(vscale*part(2,j,k)*divhbar) - 2.5)
 part(4,j,k) = abs(wf) &
 & / (1.0 + exp(4*rtemp))
 end if
 end if

 if (.false.) then
 part(4,j,k) = abs(wf) &
 & * exp(-0.5*((sigma*vscale*part(2,j,k)*divhbar)**2))
&

 & * (1 + 2*(bcoeff *cos(vscale*part(2,j,k)*divhbar)
+ &

 & ccoeff *cos(2*vscale*part(2,j,k)*divhbar) + &
 & dcoeff *cos(3*vscale*part(2,j,k)*divhbar)))

! & * (1 - (exp(-0.5/(sigma*sigma))/(1 + exp(-
2.0/(sigma*sigma))) &
! & * 2*cos(vscale*part(2,j,k)*divhbar)))
 end if

 if (.false.) then
 rtemp = abs(vscale*part(2,j,k)*divhbar)
 if (rtemp.le.pi) then
 part(4,j,k) = abs(wf)
 else
 part(4,j,k) = abs(wf)*exp(6*(pi**2 -
rtemp**2))
 end if
 end if

! phase separately

 part(5,j,k) = atan2(aimag(wf),real(wf))
 else

 part(4,j,k) = (exp(-siginterp*dx*dx)*abs(wf) &

196

 & + abs(wfr)*exp(-siginterp*(dx - 1)**2) &
 & + abs(wfl)*exp(-siginterp*(1 + dx)**2))
&
 & * exp(-0.5*((sigma*vscale*part(2,j,k)*divhbar)**2))
 if (wf.eq.0) then
 wf = wfr + wfl
 end if
! phase separately
 wfr = wfr * conjg(wf)
 wfl = wfl * conjg(wf)
! part(5,j,k) = atan2(aimag(wf),real(wf)) + &
! & (.5*(atan2(aimag(wfr),real(wfr))*(.5 + dx)**2 + &
! & atan2(aimag(wfl),real(wfl))*(.5 - dx)**2))
 part(5,j,k) = atan2(aimag(wf),real(wf)) + &
 & atan2(aimag(wfr),real(wfr))*exp(-siginterp*(dx -
1)**2) + &
 & atan2(aimag(wfl),real(wfl))*exp(-siginterp*(1 +
dx)**2)

 end if
! wf = q * cmplx(cos(phase),sin(phase))
 end if

 part(6,j,k) = 1.0 ! det of step 0
 part(7,j,k) = 0.0 ! det of "step -1"
 part(8,j,k) = 0.0 ! unused (for now)

 end do
 end do

 end subroutine

Listing C. Particle preparation routine.

E. Particle Push

 subroutine
ppush1(part,fx,npp,noff,qtm,dt,ek,idimp,npmax,nblok, &
 &nxpmx,nx,l,nspecies,pt)
! for 1d code, this subroutine updates particle co-ordinate
and velocity
! using leap-frog scheme in time and second-order spline
interpolation
! in space, with periodic boundary conditions, for
distributed data.

197

! equations used are:
! v(t+dt/2) = v(t-dt/2) + (q/m)*fx(x(t))*dt, where q/m is
charge/mass,
! and x(t+dt) = x(t) + v(t+dt/2)*dt
! fx(x(t)) is approximated by interpolation from the nearest
grid points
! fx(x) = (.75-dx**2)*fx(n)+.5*(fx(n+1)*(.5+dx)**2+fx(n-
1)*(.5-dx)**2)
! where n = nearest grid point and dx = x-n
! part(1,n,l,k) = position x of particle n of species l in
partition k
! part(2,n,l,k) = velocity vx of particle n of species l in
partition k
! fx(j,k) = force/charge at grid point jj, that is
convolution of
! electric field over particle shape, where jj = j + noff(k)
- 1
! npp(l,k) = number of particles of species l in partition k
! noff(k) = leftmost global gridpoint in particle partition
k.
! qtm = particle charge/mass ratio times dt
! dt = time interval between successive calculations
! kinetic energy/mass at time t is also calculated, using
! ek = .125*sum((v(t+dt/2)+v(t-dt/2))**2)
! idimp = size of phase space = 2
! npmax = maximum number of particles in each partition
! nblok = number of particle partitions.
! nxpmx = maximum size of particle partition, including
guard cells.
! nx = size of space.
! scalar version with spatial decomposition
 implicit none
 integer ::
idimp,npmax,nspecies,nblok,nxpmx,npp,noff,l,nx
 real :: sum1, work1, part, fx, pt, qtm, dt, ek
 dimension part(idimp,npmax,nblok)
! dimension part(idimp,npmax,nspecies,nblok)
 dimension
fx(nxpmx,nspecies,nblok),npp(nspecies,nblok),noff(nblok)
 dimension pt(nxpmx,nspecies,nblok)
 dimension sum1(1), work1(1)

 integer :: j,k, nn, nnoff
 real :: dx, ax, px, phase, oldposition
 real, parameter :: bounceposition = 1.5

 sum1(1) = ek*8.
 do 20 k = 1, nblok
 nnoff = noff(k) - 2

198

 do 10 j = 1, npp(l,k)

 phase = 0.0 ! Initialize phase adjustment
 oldposition = part(1,j,k) ! store just in case
! find interpolation weights
 nn = part(1,j,k) + .5
 dx = part(1,j,k) - float(nn)
 nn = nn - nnoff
! find acceleration
 ax = (.75 - dx*dx)*fx(nn,l,k) + .5*(fx(nn+1,l,k)*(.5 +
dx)**2 + &
 &fx(nn-1,l,k)*(.5 - dx)**2)
 px = (.75 - dx*dx)*pt(nn,l,k) + .5*(pt(nn+1,l,k)*(.5 +
dx)**2 + &
 &pt(nn-1,l,k)*(.5 - dx)**2)
! new velocity
 dx = part(2,j,k) + qtm*ax
! average kinetic energy
 sum1(1) = sum1(1) + (part(2,j,k) + dx)**2
! action accumulate
! part(3,j,k) = part(3,j,k) + .125*dt*(part(2,j,k) +
dx)**2 -
! &qtm*px
 part(3,j,k) = part(3,j,k) + .5*dt*((dx)**2) - qtm*px
! new velocity
 part(2,j,k) = dx
! new position
 part(1,j,k) = part(1,j,k) + dx*dt

 if (.true.) then
! check if beyond boundary & reflect
 if (part(1,j,k).lt.(bounceposition)) then
! part(1,j,k) = (bounceposition)*2 - part(1,j,k)
 part(1,j,k) = oldposition
 if (part(2,j,k).lt.(0.0)) part(2,j,k) = -
part(2,j,k)
! phase = phase +
3.1415926535897932384626433832795028
 else if (part(1,j,k).gt.(nx-bounceposition)) then
! part(1,j,k) = (nx-bounceposition)*2 - part(1,j,k)
 part(1,j,k) = oldposition
 if (part(2,j,k).gt.(0.0)) part(2,j,k) = -
part(2,j,k)
! phase = phase +
3.1415926535897932384626433832795028
 end if
 end if

! find interpolation weights

199

 nn = part(1,j,k) + .5
 dx = part(1,j,k) - float(nn)
 nn = nn - nnoff
! push det's, using (∂t)^2 V'' / m = (dt/vscale)^2
(qtm*(vscale**2)/dt)*pt'' / m = pt''*qtm*dt
 px = pt(nn+1,l,k) + pt(nn-1,l,k) - 2.0*pt(nn,l,k)
 ax = part(7,j,k)
 part(7,j,k) = part(6,j,k)
 part(6,j,k) = (2.0 - px*qtm*dt) * part(7,j,k) - ax
! now to check for possible behavior of the det
 px = part(7,j,k)*part(6,j,k)
 if (px.lt.0) then ! we have a zero crossing (sign
flip)
 phase = phase -
3.1415926535897932384626433832795028*0.5
 else if (px.eq.0) then
 phase = phase -
3.1415926535897932384626433832795028*0.25
 end if

! update phase with any changes
 part(5,j,k) = part(5,j,k) + phase

 10 continue
 20 continue

! this line is used for distributed memory mpi computers
 call psum(sum1,work1,1,1)
! normalize kinetic energy
 ek = .125*sum1(1)
 end subroutine

Listing D. Particle push routine.

F. Wavefunction Reconstruction/Particle Deposit

 subroutine
wdeposit(wfcn,part,npp,noff,nxp,indx,l,divhbar,wmult,dt, &

&div2sigsq,idimp,npmax,nblok,nvp,idproc,nxpmx,nspecies,vscal
e, &
 &noffglob,nxpglob,kxp,kblok,mixup,sct,cxexpt)
! for 1d code, this subroutine distributes wavefunction
density

200

! using second-order spline interpolation, with periodic
boundaries
! and distributed data.
! density is approximated by values at the nearest grid
points
! q(n)=qm*(.75-dx**2), q(n+1)=.5*qm*(.5+dx)**2, q(n-
1)=.5*qm*(.5-dx)**2
! where n = nearest grid point and dx = x-n
! part(1,n,l,k) = position x of particle n of species l in
partition k
! q(j,l,k) = species l density at grid point jj, where jj =
j + noff(k)-1
! wfcn = given complex valued wavefunction; output returned
here
! part = particle data
! npp(l,k) = number of particles of species l in partition k
! noff(k) = leftmost global gridpoint in particle partition
k.
! noffglob(k) = leftmost global gridpoint in particle
partition k (all partitions).
! divhbar = inverse of hbar
! idimp = size of phase space + action + old position
! npmax = maximum number of particles in each partition
! nblok = number of particle partitions.
! nxpmx = maximum size of particle partition, including
guard cells.
! complex scalar version with spatial decomposition
 implicit none
! common block for parallel processing
 integer nproc, lgrp, lstat, mreal, mint, mcplx
! lstat = length of status array
 parameter(lstat=8)
! lgrp = current communicator
! mreal = default datatype for reals
 common /pparms/ nproc, lgrp, mreal, mint, mcplx
! get definition of MPI constants
 include 'mpif.h'

! Information needed for using the fft
 integer :: kxp, kblok, isign, kstrt, kfinish
 integer, dimension(kxp,kblok) :: mixup
 complex, dimension(kxp,kblok) :: sct
 integer :: kdep, kdeprange
 parameter (kdeprange = 64)

 integer :: npp, noff, l, idimp, npmax, nblok, nxpmx
 integer :: indx, nx, nspecies, nvp, idproc
 real :: part, divhbar, vscale, div2sigsq
 complex, dimension(nxpmx,nspecies,nblok) :: wfcn

201

 dimension part(idimp,npmax,nblok)
! dimension part(idimp,npmax,nspecies,nblok)
 dimension npp(nspecies,nblok), noff(nblok)
 integer, dimension(nvp) :: noffglob
 integer, dimension(nvp) :: nxpglob
 integer, dimension(nblok) :: nxp
! I need the full space, even in dist. mem
 complex, dimension(nxpmx, nvp, nblok) :: wtemp
 complex :: wmult, wf, ctemp, cincr
 real :: dx, dt, phase, pi, pdh, wavenn, rtemp
 integer :: k, j, kw, jw, nn, nnoff, kt, msid, istatus,
ierr, itemp
 dimension istatus(lstat)
 parameter (pi = 3.1415926535897932384626433832795028
)

 complex, dimension(kxp, nvp, kblok) :: wktemp
 complex, dimension(kxp, kblok) :: f, g
 integer, dimension(nvp) :: blocklengths
 logical, parameter :: doPdeposit = .false.

 logical, parameter :: usecxexpt = .false.
 integer, parameter :: cxexpsize = 1024
 complex, dimension(cxexpsize+1+cxexpsize+1) :: cxexpt

 nx = 2**indx

! print *, indx, nx, kxp, kblok

 if (.not.doPdeposit) then ! write wave
!Set wtemp to zero
 do k=1,nblok
 do kw=1,nvp
 do j=1,nxpmx
 wtemp(j,kw,k) = 0.0
 end do
 end do
 end do

 if (usecxexpt) then
 if (real(cxexpt(1)).lt.0) then
 ! needs initialization
 do j=0,cxexpsize+1
 cxexpt(j) = cmplx(cos((j-
1)*pi/cxexpsize),sin((j-1)*pi/cxexpsize))
 cxexpt(j+cxexpsize+1) = cmplx(cos((j-
1)*2*pi/(cxexpsize*cxexpsize)),sin((j-
1)*2*pi/(cxexpsize*cxexpsize)))
 end do

202

 end if
 end if

 else ! using p deposit
!Set wktemp to zero
 do k=1,kblok
 do kw=1,nvp
 do j=1,kxp
 wktemp(j,kw,k) = 0.0
 end do
 end do
 end do

 end if

! Deposit by particle path
 do k = 1, nblok
 nnoff = noff(k) - 2
 do j = 1, npp(l,k)

! p final divided by hbar
 pdh = vscale*part(2,j,k)*divhbar
! if (.false.) then
! if (part(2,j,l,k).lt.0.0) then
! pdh = vscale*(2.0 - part(2,j,l,k))*divhbar
! end if
! else
 if (doPdeposit) then ! for p deposit (or equiv)
! find interpolation weights for final momentum, & adjust
for negative values
 dx = pdh * (nx/(2*pi)) + 2*nx
 nn = dx + .5
 dx = dx - float(nn)
 nn = nn - 2*nx
! pdh = nn * (2*pi/nx)
 end if

! Total phase = Action/hbar + atan2(original psi)
 phase = vscale * part(3,j,k) * divhbar + part(5,j,k)
! Vaslov factors et al to be accounted for elsewhere

! Additional phase: - pfinal * xend / hbar
 phase = phase - pdh * part(1,j,k)

! Read initial wf out of particle memory & multiply
! mechanism for getting contribution to final psi
! wf = wmult * part(4,j,l,k) *
cmplx(cos(phase),sin(phase))

203

! wf = wmult * part(4,j,l,k) ! w/o determinant
factor
 if (abs(part(6,j,k)).gt.0.00001) then
 wf = wmult * part(4,j,k) / sqrt(abs(part(6,j,k)-
part(7,j,k))) ! w/ det factor
 end if

! Now we distribute into the next wavefunction

! Information from one particle is distributed to enitre
wavefunction, but with phase shift
 if (.not.doPdeposit) then
 do kw=1,nvp
 nnoff = noffglob(kw) - 2
! nnoff = ((kw-1)*nx)/nvp - 2
 if (.true.) then

 ctemp = wf * &
 & cmplx(cos(phase + pdh * (nnoff + 1)), &
 & sin(phase + pdh * (nnoff + 1)))
 cincr = cmplx(cos(pdh), sin(pdh))
 do jw=1,nxpmx ! 2,nxpglob(kw)+1

 wtemp(jw,kw,k) = wtemp(jw,kw,k) + ctemp

 ctemp = ctemp * cincr
 end do

 else
 do jw=1,nxpmx ! 2,nxpglob(kw)+1
 itemp = nnoff + jw
! if (itemp.ge.112) itemp = itemp - nx

 if (usecxexpt) then
 rtemp = (phase + pdh * (itemp)) * (0.5/pi)
 itemp = rtemp + 0.5
 if ((rtemp+0.5).lt.0) itemp = itemp - 1
 rtemp = rtemp - float(itemp)

 ! -0.5 <= rtemp < 0.5

 itemp = (2*cxexpsize)*abs(rtemp)
 ctemp = cxexpt(itemp+1)
 if (rtemp.lt.0) then
 ctemp = wf * conjg(ctemp)
 else
 ctemp = wf * ctemp
 end if

204

 else
 ctemp = wf * &
 & cmplx(cos(phase + pdh * (itemp)), &
 & sin(phase + pdh * (itemp)))
 end if

 wtemp(jw,kw,k) = wtemp(jw,kw,k) + ctemp
 end do

 end if
 end do

 else ! Assuming p space

! wavenn = (2*pi/nx) * nn
 if ((nn.lt.(nx/2)).and.(nn.ge.(-nx/2))) then
 if (abs(dx).lt.(0.00001)) then
 ctemp = 1.0
 else
 ctemp = sin(pi*dx)/(pi*dx)
 end if
 ctemp = ctemp * wf * &
 & cmplx(cos(phase + pi*dx),sin(phase + pi*dx))

 jw = nn
 if (nn.lt.0) jw = jw + nx
 kw = jw/kxp
 jw = 1 + jw - kxp*kw
! if ((jw.gt.0).and.(jw.le.kxp)) then
 wktemp(jw, 1+kw, k) = wktemp(jw, 1+kw, k) + ctemp
! else
! print *, jw, kw
! end if
 end if

 !equiv of
! do kw=1,nvp
! nnoff = noffglob(kw) - 2
! do jw=2,nxpglob(kw)+1
! wf = ctemp * &
! & cmplx(cos(wavenn * (nnoff + jw)), &
! & sin(wavenn * (nnoff + jw)))
! wtemp(jw,kw,k) = wtemp(jw,kw,k) + wf
! end do
! end do

! higher p's
! wavenn = (2*pi/nx)*(nn+1)

205

 kstrt = 1
 kfinish = kdeprange
 if ((nn+kstrt).lt.(-nx/2)) kstrt = - (nx/2) - nn
 if ((nn+kfinish).ge.(nx/2)) kfinish = (nx/2) - nn -
1
 do kdep = kstrt, kfinish
 jw = nn + kdep
! if ((jw.lt.(nx/2)).and.(jw.ge.(-nx/2))) then
 ctemp = sin(pi*(dx-kdep))/(pi*(dx-kdep)) * wf &
 & * cmplx(cos(phase + pi*(dx-kdep)),sin(phase + pi*(dx-
kdep)))

 if (jw.lt.0) jw = jw + nx
 kw = jw/kxp
 jw = 1 + jw - kxp*kw
! if ((jw.gt.0).and.(jw.le.kxp)) then
 wktemp(jw, 1+kw, k) = wktemp(jw, 1+kw, k) +
ctemp
! else
! print *, jw, kw
! end if
! end if
 end do

! lower p's
! wavenn = (2*pi/nx)*(nn-1)
 kstrt = 1
 kfinish = kdeprange
 if ((nn-kstrt).ge.(nx/2)) kstrt = 1 - (nx/2) + nn
 if ((nn-kfinish).lt.(-nx/2)) kfinish = (nx/2) + nn
 do kdep = kstrt, kfinish
 jw = nn - kdep
! if ((jw.lt.(nx/2)).and.(jw.ge.(-nx/2))) then
 ctemp = wf * sin(pi*(dx+kdep))/(pi*(dx+kdep)) *
&
 & cmplx(cos(phase + pi*(dx+kdep)),sin(phase +
pi*(dx+kdep)))

 if (jw.lt.0) jw = jw + nx
 kw = jw/kxp
 jw = 1 + jw - kxp*kw
! if ((jw.gt.0).and.(jw.le.kxp)) then
 wktemp(jw, 1+kw, k) = wktemp(jw, 1+kw, k) +
ctemp
! else
! print *, jw, kw
! end if
! end if
 end do

206

 end if

 end do
 end do

!copy wtemp pieces to wfcn (note: no guard cells are
necessary)
 if (.false.) then
! for shared memory
 do k=1,nblok

 do j=1,nxpmx
 wfcn(j,l,k) = wtemp(j,k,k)
 end do

 end do

 do k=1,nblok

 do kw=1,nvp
 if (kw.ne.k) then
 do j=1,nxpmx
 wfcn(j,l,kw) = wfcn(j,l,kw) + wtemp(j,kw,k)
 end do
 end if
 end do

 end do
 end if

 if (.not.doPdeposit) then
! for distributed mpi
 if (.false.) then
! (Same as MPI_REDUCE_SCATTER, but that's not in MacMPI as
of 980722)
 do k=1,nblok
 ! copy to self
 do j=1,nxpmx
 wfcn(j,l,k) = wtemp(j,k+idproc,k)
 end do

 end do
 ! Now there's room to play with in wtemp

 do k=1,nblok

 do kw=1,nvp-1
 kt = k + idproc - kw

207

 if (kt.lt.1) kt = kt + nvp
 ! recieve into the freed up block
 call MPI_IRECV(wtemp(1,k+idproc,k),nxpmx,mcplx,kt-
1,kw,lgrp,msid,ierr)
 kt = k + idproc + kw
 if (kt.gt.nvp) kt = kt - nvp
 ! send data to the one who needs it
 call MPI_SEND(wtemp(1,kt,k),nxpmx,mcplx,kt-
1,kw,lgrp,ierr)
 call MPI_WAIT(msid,istatus,ierr)

 do j=1,nxpmx
 wfcn(j,l,k) = wfcn(j,l,k) + wtemp(j,k+idproc,k)
 end do

 end do

 end do
 else

 do kw = 1, nvp
 blocklengths(kw) = nxpmx
 end do
 call MPI_REDUCE_SCATTER(wtemp(:,:,1),
wfcn(:,l,1), &
 & blocklengths, mcplx, MPI_SUM, lgrp, ierr)

 end if
 end if

 if (doPdeposit) then ! p deposit
! for distributed mpi

 if (.false.) then
! (Same as MPI_REDUCE_SCATTER, but that's not in MacMPI as
of 980729)

! print *, 'summing into f'
 do k=1,kblok
 ! copy to self
 do j=1,kxp
 f(j,k) = wktemp(j,k+idproc,k)
 end do

 end do
 ! There's room to play with in wktemp

 do k=1,kblok

208

 do kw=1,nvp-1
 kt = k + idproc - kw
 if (kt.lt.1) kt = kt + nvp
 ! recieve into the freed up block wktemp(1,k+idproc,k)
 call MPI_IRECV(g(1,k),kxp,mcplx,kt-
1,kw,lgrp,msid,ierr)
 kt = k + idproc + kw
 if (kt.gt.nvp) kt = kt - nvp
 ! send data to the one who needs it
 call MPI_SEND(wktemp(1,kt,k),kxp,mcplx,kt-
1,kw,lgrp,ierr)
 call MPI_WAIT(msid,istatus,ierr)

 do j = 1, kxp
 f(j,k) = f(j,k) + g(j,k)
! wktemp(j,k+idproc,k) = wktemp(j,k+idproc,k) +
wk2temp(j,k+idproc,k)
 end do

 end do

 end do
 else

 do kw = 1, nvp
 blocklengths(kw) = kxp
 end do
 call MPI_REDUCE_SCATTER(wktemp, f, blocklengths,
mcplx, MPI_SUM, lgrp, ierr)

 end if

! print *, 'Initializing FFT'

! isign = 0
 kstrt = 1+idproc
! call pfft1c(f,g,isign,mixup,sct,indx,kstrt,kxp,kblok)
! print *, kxp, kblok
! print *, mixup
! print *, sct
 print *, 'Deposit: Calling FFT'
 isign = 1
 call pfft1c(f,g,isign,mixup,sct,indx,kstrt,kxp,kblok)

 do k = 1, kblok
 wfcn(1,l,k) = 0
 do j = 1, kxp
! if (.false.) then !(j-(j/2)*2).ne.0) then !
I'd love a "if (j&1)" right here

209

! wfcn(j+1,l,k) = - f(j,k)
! else
 wfcn(j+1,l,k) = f(j,k)
! end if
 end do
 do j = kxp+2, nxpmx
 wfcn(j,l,k) = 0
 end do
 end do

 end if

 if (.false.) then ! make sure wfcn periodic by adding
the right a*(x-(nx/2))

 if (.false.) then ! shared memory
 ctemp = (wfcn(2,l,1) - wfcn(1+nxp(nblok),l,nblok)
) / (nx - 1)
 end if

 if (.true.) then ! distributed mpi

 if (idproc.eq.0) then ! recieve last w
 call MPI_IRECV(wtemp(2,1,1),1,mcplx,nvp-
1,nvp,lgrp,msid,ierr)
 end if
 if (idproc.eq.(nvp-1)) then ! send last w
 call
MPI_SEND(wfcn(1+nxp(nblok),l,nblok),1,mcplx,0,nvp,lgrp,ierr)
 end if

 if (idproc.eq.0) then
 call MPI_WAIT(msid,istatus,ierr)
 ctemp = (wfcn(2,l,1) - wtemp(2,1,1)) / (nx - 1)
! calculate coefficient and tell it to everyone else
 do k = 2, nvp
 call MPI_SEND(ctemp,1,mcplx,k-1,0,lgrp,ierr)
 end do
 else
! get coefficient from proc 0
 call MPI_IRECV(ctemp,1,mcplx,0,0,lgrp,msid,ierr)
 call MPI_WAIT(msid,istatus,ierr)
 end if

 end if

 do k = 1, nblok
 dx = noff(k) - 2 - 0.5*nx

210

 do j = 2, nxp(k)+1
 wfcn(j,l,k) = wfcn(j,l,k) + ctemp * (j + dx)
 end do

 end do

 end if

 if (.true.) then ! zero edges

 if (idproc.eq.0) then
 wfcn(1,l,1) = cmplx(0.,0.)
 wfcn(2,l,1) = cmplx(0.,0.)
 wfcn(3,l,1) = cmplx(0.,0.)
 wfcn(4,l,1) = cmplx(0.,0.)
 if (.true.) then
 wfcn(5,l,1) = cmplx(0.,0.)
 wfcn(6,l,1) = cmplx(0.,0.)
 if (.false.) then
 wfcn(7,l,1) = cmplx(0.,0.)
 wfcn(8,l,1) = cmplx(0.,0.)
 wfcn(9,l,1) = cmplx(0.,0.)
 wfcn(10,l,1) = cmplx(0.,0.)
! wfcn(11,l,1) = cmplx(0.,0.)
 end if
 end if
 end if
 if (idproc.eq.(nvp-1)) then
 if (.true.) then
 if (.false.) then
! wfcn(-7+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-6+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-5+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-4+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-3+nxp(nblok),l,nblok) = cmplx(0.,0.)
 end if
 wfcn(-2+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(-1+nxp(nblok),l,nblok) = cmplx(0.,0.)
 end if
 wfcn(0+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(1+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(2+nxp(nblok),l,nblok) = cmplx(0.,0.)
 wfcn(3+nxp(nblok),l,nblok) = cmplx(0.,0.)
 end if

 end if

 end subroutine

211

Listing E. Wavefunction reconstruction/virtual classical particle deposit

routine.

212

X. Appendix C

- The source code for the visualization and the

quantum data formats

A. Visualization

The following list codes used to visualize the output of the quantum PIC

code. These listings are in C.

#define ColorReferenceVal 0xC000L //=0.75*0x10000
/* =0.75*65536=0x0.C*0x10000
This describes the brightness of the pixel */

Handle phaseColorHandle=nil;
long *phaseColorArray=nil;
long Complex2PhaseColor(Complex *in, long *outPhaseOnlyColor, myReal
*magSqOut);
//Converts a Complex number into a phase color representation,
compacted into 0x00rrggbb
long Complex2PhaseColor(Complex *in, long *outPhaseOnlyColor, myReal

213

*magSqOut)
{long out=0;
if (!phaseColorHandle) { long tli;

phaseColorHandle=NewHandle(514L<<2); //Allocating room for
514 longs

MoveHHi(phaseColorHandle); HLock(phaseColorHandle);
phaseColorArray=(long*)*phaseColorHandle;
for(tli=514; tli--;) {

HSVColor tHSV={0,MaxSmallFract,MaxSmallFract};
RGBColor tRGB;
tHSV.hue=MaxSmallFract*((tli<256)?tli+256:tli-

256)>>9;
HSV2RGB(&tHSV,&tRGB);
phaseColorArray[tli]=((long)tRGB.red&0xff00)<<8

| ((long)tRGB.green&0xff00)
| ((long)tRGB.blue)>>8;

}
phaseColorArray+=256;
}

if (phaseColorHandle) {
myReal magSq=in->a*in->a;
myReal p=CPhase((*in))*invPi; //Convert [-π,π] to [-1,1]
long tli, br;
magSq+=in->b*in->b;
tli=p*256;
br=magSq*ColorReferenceVal;
out=phaseColorArray[tli];
if (magSqOut) *magSqOut=magSq;
if (outPhaseOnlyColor) *outPhaseOnlyColor=out;

tli=br*((Byte*)&out)[1];
((Byte*)&out)[1]=(tli&0xff000000)?0xff:(tli>>16);
tli=br*((Byte*)&out)[2];
((Byte*)&out)[2]=(tli&0xff000000)?0xff:(tli>>16);
tli=br*((Byte*)&out)[3];
((Byte*)&out)[3]=(tli&0xff000000)?0xff:(tli>>16);

}

return out;
}

void DrawPhaseCircle(short left, short top)
{ long tx,ty; Complex tC; RGBColor tRGB; myReal tr; long

tli;
tr=0.9*PhaseCircleRadius; tr=1/tr;
for(ty=0; ty<(PhaseCircleRadius<<1); ty++)

for(tx=0; tx<(PhaseCircleRadius<<1); tx++)
if ((tx-PhaseCircleRadius)*(tx-

PhaseCircleRadius)+(ty-PhaseCircleRadius)*(ty-
PhaseCircleRadius)<PhaseCircleRadius*PhaseCircleRadius) {

tC.a=tr*(tx-PhaseCircleRadius);
tC.b=tr*(PhaseCircleRadius-ty); //Because up

is the negative y direction in graphics

214

//ComplexSq2RGB(&tC, &tRGB, nil, true);
tli=Complex2PhaseColor(&tC, nil, nil);
tRGB.red=0xff00&(tli>>8);
tRGB.green=0xff00&(tli);
tRGB.blue=(0xff&tli)<<8;
RGBForeColor(&tRGB);
MoveTo(tx+left,ty+top); Line(0,0);
}

}

void DisplayWavefcn(Complex *wf, long sizeX, long bandOffset, long
bandSize, long flags)

{ long baseAddr=(long)(*mainGWPM)->baseAddr,
rowBytes=0x3fff&(long)(*mainGWPM)->rowBytes,

tx,ty;//, sizeX=1<<lgArenaSizeX;
long tmpTC=TickCount(), lastheight=DisplayHeight-1;
Rect tRect={0,0, DisplayHeight, 1<<lgArenaSizeX};
RGBColor tRGB={0,0,0};
tRect.right=sizeX;

ForeColor(whiteColor); BackColor(blackColor);
if (!(flags&DontErase)) EraseRect(&tRect);

for(tx=sizeX; tx--;) {
long colorPhaseMag, colorPhase;
myReal magSq;

ForeColor(whiteColor); MoveTo(tx, DisplayHeight-1);
Line(0,0);

/*ComplexSq2RGB(wfptr+tx, &tRGB, nil, true); //or
&wfptr[tx] pg 99 of K&R

tp[tx]=((long)tRGB.red&0xff00)<<8
| ((long)tRGB.green&0xff00)
| ((long)tRGB.blue)>>8; */

{Complex tC=wf[tx];
// CScalar(tC, tC, 4);

colorPhaseMag=Complex2PhaseColor(&tC/*wf+tx*/,
&colorPhase, &magSq);

}
if (flags&PlotWhite) magSq=wf[tx].a;
else if (flags&DontDrawBand) magSq=wf[tx].a+wf[tx].b;
else {

long tli;
#define cmultiplier 8

tli=cmultiplier*((colorPhaseMag&0xff0000)>>16);
tRGB.red=tli>0x00ffL?0xffffL:0x0101L*tli;
tli=cmultiplier*((colorPhaseMag&0xff00)>>8);
tRGB.green=tli>0x00ffL?0xffffL:0x0101L*tli;
tli=cmultiplier*(colorPhaseMag&0xff);
tRGB.blue=tli>0x00ffL?0xffffL:0x0101L*tli;

#undef cmultiplier
/* tRGB.red=0x0101L*((colorPhaseMag&0xff0000)>>16); //0x0101L

tRGB.green=0x0101L*((colorPhaseMag&0xff00)>>8);

215

tRGB.blue=0x0101L*(colorPhaseMag&0xff);*/
if (!(flags&PlotWhite)) RGBForeColor(&tRGB);
MoveTo(tx, DisplayHeight-bandSize-1+bandOffset);

Line(0,bandSize);
}

tRGB.red=0x0101L*((colorPhase&0xff0000)>>16);
tRGB.green=0x0101L*((colorPhase&0xff00)>>8);
tRGB.blue=0x0101L*(colorPhase&0xff);
if (!(flags&PlotWhite)) RGBForeColor(&tRGB);
if (flags&ConnectDots) {

MoveTo(tx+1, lastheight);
LineTo(tx,

lastheight=(flags&DontDrawBand?bandOffset:DisplayHeight-1)-
magSq*DisplayHeight);

}
else {

MoveTo(tx,
lastheight=(flags&DontDrawBand?bandOffset:DisplayHeight-1)-
magSq*DisplayHeight); Line(0,0); // *0.75

}
}

tmpTC=TickCount()-tmpTC;

tmpTC=0x03303030+(tmpTC%10)+(((tmpTC/10)%10)<<8)+(((tmpTC/100)%10)<<16
);

//MoveTo(mainGWRect.right, 16); ForeColor(whiteColor);
DrawString((StringPtr)&tmpTC);

}

Listing F. Code used to visualize the data from the quantum PIC code.

B. Quantum Correlation Analysis, Eigenstate Extraction, and Data Reader

Most of the correlation analysis of the quantum was a custom-built

parallel code, with its own ability to read binary data files output by the

quantum PIC code. This listing is in C. These routines are presented together

because of their interdependence.

216

void TransposeInMNOutData(long *inP, long *outP, long lgElemSize /*in
longs*/, long M, long N);
void TransposeInMNOutData(long *inP, long *outP, long lgElemSize /*in
longs*/, long M, long N)

{/* Transpose a M elements/row, N row matrix in inP to outP */
if (inP) if (outP)
if (lgElemSize>=0)
if (M>=1)
if (N>=1) {

long j=N;

while (j--) {
long i=M;

while (i--) {
long k=1L<<lgElemSize;
while (k--) {

long
tli=inP[k+(i<<lgElemSize)+(j*M<<lgElemSize)];

outP[k+(j<<lgElemSize)+(i*N<<lgElemSize)]=tli;
}

}

}

}

}

void TransposeSquareData(long *inP, long elemSize /*in longs*/, long
M);
void TransposeSquareData(long *inP, long elemSize /*in longs*/, long
M)

{
if (inP)
if (elemSize>0)
if (M>1) {

long j=M;

while (--j) {
long i=j;

while (i--) {
long k=elemSize;

// printf("Swapping: (%d,%d)\n", i, j);
while (k--) {

long tli=inP[k+i*elemSize+j*M*elemSize];
long

tli2=inP[k+j*elemSize+i*M*elemSize];
inP[k+j*elemSize+i*M*elemSize]=tli;
inP[k+i*elemSize+j*M*elemSize]=tli2;
}

217

}

}

}

}

#define Dim 10
void TestTransposers()

{
long array[Dim][Dim];
long array2[Dim*Dim];
printf("Testing Square Transposer\n");

{long j, count=0;
for(j=0; j<Dim; j++)

{long i;
for(i=0; i<Dim; i++) {

array[j][i]=count++;
printf("%6d", array[j][i]);
}

printf("\n");
}

}

TransposeSquareData((long*)array, 1, Dim);

{long j;
for(j=0; j<Dim; j++)

{long i;
for(i=0; i<Dim; i++) {

printf("%6d", array[j][i]);
}

printf("\n");
}

}

printf("Testing Regular Transposer\n");

TransposeInMNOutData((long*)array, array2, 0, Dim, Dim-2);

{long j;
for(j=0; j<Dim; j++)

{long i;
for(i=0; i<Dim-2; i++) {

printf("%6d", array2[j*(Dim-2)+i]);
}

printf("\n");
}

}

218

}

BabyQFileInfoStruct bfi[MaxBabyQFiles];

short CheckIndexOkay(short in);
short CheckIndexOkay(short in)

{short out=0;
if ((in>0)&&(in<=MaxBabyQFiles))

if (bfi[in].status)
out=1;

return out;
}

long GetNumQ(short in);
long GetNumQ(short in)

{long out=0;
if (CheckIndexOkay(in))

out=bfi[in].numQ;
return out;
}

long GetNumSteps(short in);
long GetNumSteps(short in)

{long out=0;
if (CheckIndexOkay(in))

out=bfi[in].numSteps;
return out;
}

void DisposeBabyQDH(short in);
void DisposeBabyQDH(short in)

{
if (CheckIndexOkay(in))

if (bfi[in].dataHandle) {
HUnlock(bfi[in].dataHandle);
DisposeHandle(bfi[in].dataHandle);
bfi[in].dataHandle=nil;
bfi[in].dataP=nil;
bfi[in].dataMode=0;
bfi[in].dataMemSize=0;
}

}

void CloseBabyQBinFile(short in, long idproc, long nproc)
{//Close file and release related memory
if (bfi[in].status) {

bfi[in].status=0;
DisposeBabyQDH(in);

if (!idproc)

219

fclose(bfi[in].fp);
bfi[in].fp=nil;

{long i=sizeof(BabyQFileInfoStruct)>>2;
while (i--) ((long*)&bfi[in])[i]=0;
}

}
}

short OpenBabyQBinFile(const char *inFileName, long idproc, long
nproc)

{short out=0;
if (!idproc)

if (inFileName) {
{long i;
for(i=1; (i<=MaxBabyQFiles)&&!out; i++)

if (!bfi[i].status) out=i;
}
if (out) {

printf("Opening…");
/* if (noErr==FSpOpenDF(inFS, fsRdPerm,
&bfi[out].fref)) */

bfi[out].fp=fopen(inFileName, "rb");
if (bfi[out].fp) {

BabyQBinaryHeaderStruct header;
long byteCount;
short validHeader=0; OSErr err;

// GetEOF(bfi[out].fref, &bfi[out].fileSize);
fseek(bfi[out].fp, 0, SEEK_END);
bfi[out].fileSize=ftell(bfi[out].fp);

// SetFPos(bfi[out].fref, fsFromStart,
bfi[out].currentPosition=0);

fseek(bfi[out].fp, bfi[out].currentPosition=0,
SEEK_SET);

bfi[out].status=1;

byteCount=sizeof(BabyQBinaryHeaderStruct);
printf("Reading Header…");

// err=FSRead(bfi[out].fref, &byteCount,
&header); //Read header

byteCount=fread(&header, 1L, byteCount,
bfi[out].fp); //Read header

if (bfi[out].fileSize>64)
if (byteCount>=32)
if (!~(header.negVersion|0x0000ffffL)) {//top

16 bits are all 1's
if

((sizeof(float)==header.floatSize)||(sizeof(double)==header.floatSize)
)

if (header.dataOffset>=24) {

220

bfi[out].currentPosition+=header.dataOffset;
// SetFPos(bfi[out].fref,

fsFromStart, bfi[out].currentPosition);
fseek(bfi[out].fp,

bfi[out].currentPosition=0, SEEK_SET);
validHeader=1;
}

}
else

/*validHeader=EnterManualHeader(&header)?1:0*/;

if (validHeader) {
#define Xfer(e) bfi[out].e=header.e

Xfer(dataOffset);
Xfer(floatSize);
Xfer(numSteps);
Xfer(numQ);
Xfer(sizeX);
Xfer(nvp);
Xfer(numPreGridCells);
Xfer(numPostGridCells);

#undef Xfer

bfi[out].dataFrameSize=bfi[out].floatSize*2*bfi[out].sizeX

+bfi[out].nvp*(bfi[out].numPreGridCells+bfi[out].numPostGridCells);

bfi[out].timeFrameSize=bfi[out].dataFrameSize*bfi[out].numQ;

//Readjust numSteps in case the file size is
short

{unsigned long altNumSteps=(bfi[out].fileSize-
bfi[out].dataOffset)/

(bfi[out].timeFrameSize);
if (altNumSteps<bfi[out].numSteps)

bfi[out].numSteps=altNumSteps;
}
//Readjust numSteps to power of 2
{unsigned long lgNumSteps, altNumSteps;
for(lgNumSteps=14/*/30/**/;

bfi[out].numSteps<(1L<<lgNumSteps); lgNumSteps--) ;

altNumSteps=1L<<lgNumSteps;
if (altNumSteps<bfi[out].numSteps)

bfi[out].numSteps=altNumSteps;
}

bfi[out].fileSize=bfi[out].dataOffset+bfi[out].numSteps*
(bfi[out].timeFrameSize);

}
else {

221

printf("Incorrect data format.\n");
 CloseBabyQBinFile(out, idproc, nproc);

out=0;
}

}
else out=0;
}

}
MPI_Bcast(&out, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&bfi[out], sizeof(BabyQFileInfoStruct), MPI_BYTE, 0,

MPI_COMM_WORLD);
return out;
}

inline long StartIndex(long idproc, long nproc, long ySize);
inline long StartIndex(long idproc, long nproc, long ySize)

{
return (nproc?((ySize)*idproc/nproc):idproc?(ySize):0);
}

//#define StartIndex(idproc, nproc, ySize)
(nproc?((long)(ySize)*idproc/nproc):idproc?(ySize):0)

inline long NumIndicies(long idproc, long nproc, long ySize);
inline long NumIndicies(long idproc, long nproc, long ySize)

{
return (StartIndex(idproc+1, nproc, ySize)

-StartIndex(idproc, nproc, ySize));
}

short LoadAllBabyQData(short in, long idproc, long nproc)
{short out=0;
if (CheckIndexOkay(in)) {

long maxIndex, elemSize, storageAreaBytes,
processAreaBytes,

swapSpaceBytes, mpiInfoBytes, requestedBytes;
DisposeBabyQDH(in);

maxIndex=bfi[in].dataFrameSize/(elemSize=2*bfi[in].floatSize);

storageAreaBytes=elemSize*bfi[in].numQ*

bfi[in].numSteps*(NumIndicies(idproc, nproc, maxIndex));

processAreaBytes=max(sizeof(Complex)*2,elemSize*bfi[in].numQ)*

bfi[in].numSteps*(NumIndicies(idproc, nproc, maxIndex));

swapSpaceBytes=idproc?(1L<<21):(nproc<<21); //Try two megs per node
if (swapSpaceBytes>(64L<<20))

swapSpaceBytes=64L<<20; //but no

222

more than 64 megs
//Round down

swapSpaceBytes=(swapSpaceBytes/bfi[in].timeFrameSize)*bfi[in].timeFram
eSize;

mpiInfoBytes=(sizeof(MPI_Request)+sizeof(long))*nproc;

bfi[in].dataHandle=NewHandle(requestedBytes=storageAreaBytes

+max(processAreaBytes,swapSpaceBytes)
+mpiInfoBytes);

if (bfi[in].dataHandle) {
MoveHHi(bfi[in].dataHandle);
HLock(bfi[in].dataHandle);

bfi[in].dataP=(Byte*)*bfi[in].dataHandle; //Get pointer
{long *tp=(long*)bfi[in].dataP,

i=requestedBytes>>2;
while(i--) tp[i]=0; } //Clear

memory

out=1;
}

else
out=0; /*printf("Low memory

mode…\n")*/

if (idproc) {
long info[2];
info[0]=out;
info[1]=requestedBytes;
MPI_Send(info, 2, MPI_INT, 0,

idproc, MPI_COMM_WORLD);
}

else {
long i;

for(i=nproc; i--;)
if (i) {

long info[2];
MPI_Status stat;
MPI_Recv(info, 2,

MPI_INT, i, i, MPI_COMM_WORLD, &stat);
if (!info[0]) {

out=0;
printf("Node #%d

unable to allocate %d bytes.\n", i, info[1]);
}

}
else {

if (!bfi[in].dataP) {

223

out=0;
printf("Node #0

unable to allocate %d bytes.\n", requestedBytes);
}

}

}

MPI_Bcast(&out, 1, MPI_INT, 0,
MPI_COMM_WORLD);

if (out) {
//Proceed to read all data into

the cluster

if (idproc) {
long

recvAreaBytes=((requestedBytes-storageAreaBytes-mpiInfoBytes))&~7;
Byte *procP=bfi[in].dataP;
Byte

*recvP=procP+storageAreaBytes;
MPI_Request

*mpiInfo=(MPI_Request *)(recvP+recvAreaBytes);
long *mpiDoneFlags=(long

*)(mpiInfo+nproc);
long totalStepsRead=0;
long lgElemSize=0;
short looping=1;
//Assuming sizeX is evenly

divisible by nproc
for(;

bfi[in].dataFrameSize/nproc>(4L<<lgElemSize); lgElemSize++) ;

while (looping) {
long tsRecv=0;
MPI_Status stat;

MPI_Irecv(recvP,

recvAreaBytes,

MPI_BYTE, 0, idproc,

MPI_COMM_WORLD, mpiInfo);

MPI_Wait(mpiInfo,
&stat);

tsRecv=stat.len/(NumIndicies(idproc, nproc, maxIndex)
*bfi[in].numQ

*bfi[in].floatSize*2);

224

printf("%d bytes
received. Transposing… ", stat.len);

//Transpose and move
the data

TransposeInMNOutData((long*)recvP,

(long*)(procP+(totalStepsRead

*NumIndicies(idproc, nproc, maxIndex)

*bfi[in].numQ

*bfi[in].floatSize*2)),
lgElemSize,

tsRecv*bfi[in].numQ, 1);

totalStepsRead+=tsRecv;

printf("%d steps so
far.\n", totalStepsRead);

if
(totalStepsRead>=bfi[in].numSteps)

looping=0;
}

bfi[in].dataMode=1;

bfi[in].dataMemSize=totalStepsRead
*NumIndicies(idproc,

nproc, maxIndex)
*bfi[in].numQ
*bfi[in].floatSize*2;

}
else {// node 0

long
readAreaBytes=((requestedBytes-storageAreaBytes-mpiInfoBytes)>>1)&~7;

Byte *procP=bfi[in].dataP;
Byte

*readP=procP+storageAreaBytes;
Byte

*sendP=readP+readAreaBytes;
MPI_Request

*mpiInfo=(MPI_Request *)(sendP+readAreaBytes);
long *mpiDoneFlags=(long

*)(mpiInfo+nproc);
long totalStepsRead=0;
long lgElemSize=0;
short looping=1;
//Assuming sizeX is evenly

225

divisible by nproc
for(;

bfi[in].dataFrameSize/nproc>(4L<<lgElemSize); lgElemSize++) ;

while (looping) {
long byteCount;

if
(totalStepsRead<bfi[in].numSteps) {

printf("Reading
file…");

fseek(bfi[in].fp, bfi[in].currentPosition=

bfi[in].dataOffset+totalStepsRead*bfi[in].timeFrameSize,
SEEK_SET);

byteCount=readAreaBytes;

byteCount=fread(readP, 1, byteCount, bfi[in].fp);
}

else byteCount=0;

#ifdef testdata
printf("Generating test data at node

0\n");
{long ts;
for

(ts=(byteCount/bfi[in].timeFrameSize); ts>=0; ts--) {
long x=bfi[in].sizeX;
ComplexSingle

*d1tsP=(ComplexSingle *)(readP+
(ts*bfi[in].timeFrameSize));

ComplexSingle
*d2tsP=d1tsP+bfi[in].sizeX;

ComplexSingle tC;
float tr;

tC.a=cos((Pi/32.0)*(totalStepsRead+ts));
tC.b=sin((-

Pi/32.0)*(totalStepsRead+ts));
while (x--) {

float
snx=sin(x*(Pi/bfi[in].sizeX));

float
sn2x=sin(x*(Pi/bfi[in].sizeX)*2);

float
sn3x=sin(x*(Pi/bfi[in].sizeX)*3);

ComplexSingle tC2, tC3,
psi2;

CScalar(d1tsP[x],tC,snx);

CMult(tC2, tC, tC);
CScalar(psi2,tC2,sn2x);

226

CMult(tC3,tC,tC2);

d2tsP[x].a=sn3x*tC3.a+psi2.a;

d2tsP[x].b=sn3x*tC3.b+psi2.b;
}

}
}

#endif

if (totalStepsRead>0)
{

short waiting=1;

while (waiting)
{

short
finished=1;

long
lastWait=0;

long i;
for(i=1;

i<nproc; i++) {
int

flag;

MPI_Status stat;
if

(!mpiDoneFlags[i]) {

MPI_Test(mpiInfo+i, &flag, &stat);

if (!flag) {

finished=0;

if (lastWait!=i) {

printf("Still waiting on node #%d…\n", i);

lastWait=i;

}

else printf(".");

// break;

}

else

mpiDoneFlags[i]=1;

227

}
}

if
(finished) waiting=0;

}

}
//Now the send memory

is free

if (byteCount>0) {
long

tsRead=byteCount/bfi[in].timeFrameSize;
long i;

if
(tsRead+totalStepsRead>bfi[in].numSteps)

tsRead=bfi[in].numSteps-totalStepsRead;

printf(" %d
steps read.\n", tsRead);

printf("Transposing data for sending… ");
//Transpose the

data to make it easier to send

TransposeInMNOutData((long*)readP, (long*)sendP,

lgElemSize, nproc, tsRead*bfi[in].numQ);

printf("MPI_Isends… ");
//Head 'em up,

move 'em out
for(i=1;

i<nproc; i++) {

MPI_Isend(sendP+(StartIndex(i, nproc, maxIndex)*

tsRead*bfi[in].numQ*bfi[in].floatSize*2),

(NumIndicies(i, nproc, maxIndex)

*tsRead*bfi[in].numQ*bfi[in].floatSize*2),

MPI_BYTE, i, i,

MPI_COMM_WORLD, mpiInfo+i);

mpiDoneFlags[i]=0;
}

228

printf("Transposing data for node 0…\n");
//Transpose and

move the data that stays here

TransposeInMNOutData((long*)sendP,

(long*)(procP+(totalStepsRead

*bfi[in].numQ

<<(lgElemSize+2))),

lgElemSize, tsRead*bfi[in].numQ, 1);

totalStepsRead+=tsRead;

printf(" %d
steps so far.\n", totalStepsRead);

}
else looping=0;

}

bfi[in].dataMode=1;

bfi[in].dataMemSize=totalStepsRead
*NumIndicies(idproc,

nproc, maxIndex)
*bfi[in].numQ
<<(lgElemSize+2);

}

printf("Yum!\n");
/*The data should now be in a

format where space
is divided among processors for

all q, but the time
sequence for any one (q,x) is in

rows within a processor. */

}
else

printf("Insufficient memory on
cluster.\n");

}

return out;
}

229

void RenormalizeBabyQData(short in, long spinType, long idproc, long
nproc);
void RenormalizeBabyQData(short in, long spinType, long idproc, long
nproc)

{
long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize);
if (bfi[in].numQ<2) spinType=maxwellian;
switch (bfi[in].floatSize) {

case sizeof(float):
{
long sumRow=bfi[in].numQ<<1;
ComplexSingle *dp=(ComplexSingle *)bfi[in].dataP;
ComplexSingle *sumP=dp+bfi[in].numSteps*bfi[in].numQ

*NumIndicies(idproc, nproc, maxIndex);
ComplexSingle *sum2P=sumP+bfi[in].numSteps*sumRow;

#ifdef testdata
printf("Generating test data\n");
{long ts=bfi[in].numSteps;
while (ts--) {

long i=bfi[in].numQ
*NumIndicies(idproc, nproc,

maxIndex);
ComplexSingle *dtsP=dp+(ts*i);
ComplexSingle tC;
tC.a=cos((Pi/32.0)*ts);
tC.b=sin((Pi/32.0)*ts);
while (i--)

dtsP[i]=tC;
}

}
#endif

//Clear arrays
{long i=bfi[in].numSteps*sumRow<<1;
while (i--) sumP[i].b=sumP[i].a=0;
}

printf(" summing within processor… \n");
switch (spinType) {

case fermion:
{long ts=bfi[in].numSteps;
while(ts--) {

{// Computing <Psi2|Psi1>
ComplexSingle

*tp1=&dp[(ts*bfi[in].numQ)

*NumIndicies(idproc, nproc, maxIndex)];
ComplexSingle

*tp2=&tp1[NumIndicies(idproc, nproc, maxIndex)];
long x=NumIndicies(idproc,

nproc, maxIndex);
float sumA=0, sumB=0;
while (x--) {

230

sumA+=tp2[x].a*tp1[x].a+tp2[x].b*tp1[x].b;

sumB+=tp2[x].a*tp1[x].b-tp2[x].b*tp1[x].a;
}

sumP[ts*sumRow+bfi[in].numQ].a=sumA;

sumP[ts*sumRow+bfi[in].numQ].b=sumB;
}

}

}
case maxwellian:
default:

{long ts=bfi[in].numSteps;
while(ts--) {

long q=bfi[in].numQ;
while (q--) { //Computing

<PsiQ|PsiQ>
ComplexSingle

*tp=&dp[(ts*bfi[in].numQ+q)

*NumIndicies(idproc, nproc, maxIndex)];
long x=NumIndicies(idproc,

nproc, maxIndex);
float sum=0;
while (x--) {

sum+=CMagSq(tp[x]);
}

sumP[ts*sumRow+q].a=sum;
// printf("|psi #%d|^2 is %f ",

q, sum);
}

}

}
break;

}

printf(" summing across processors… \n");
MPI_Allreduce(sumP, sum2P,

bfi[in].numSteps*sumRow*2, MPI_FLOAT, MPI_SUM,
MPI_COMM_WORLD);

printf(" Calculating normalization factors… \n");
switch (spinType) {

case fermion:
{long ts=bfi[in].numSteps;
while(ts--) {

float
norm=sum2P[ts*sumRow+0].a*sum2P[ts*sumRow+1].a

-
CMagSq(sum2P[ts*sumRow+bfi[in].numQ]);

231

long q=bfi[in].numQ;

norm=norm>0?1.0/sqrt(sqrt(2.0*norm)):1.0;
while (q--) {

sumP[ts*sumRow+q].a=norm;
}

}
}
break;

case maxwellian:
default:

{long ts=bfi[in].numSteps;
while(ts--) {

long q=bfi[in].numQ;
while (q--) {

sumP[ts*sumRow+q].a=sum2P[ts*sumRow+q].a?

1.0/sqrt(sum2P[ts*sumRow+q].a):1.0;
}

}
}
break;

}

printf(" Normalizing… \n");
{long ts=bfi[in].numSteps;
while(ts--) {

long q=bfi[in].numQ;
while (q--) {

float
norm=sumP[ts*sumRow+q].a;

ComplexSingle
*tp=&dp[(ts*bfi[in].numQ+q)

*NumIndicies(idproc, nproc, maxIndex)];
long x=NumIndicies(idproc,

nproc, maxIndex);
while (x--) {

CScalar(tp[x], tp[x],
norm);

}
}

}
}

}
break;

case sizeof(double):
break;

default: printf("Error. Invalid float size.\n");
break;
}

232

}

void DoFFTYBabyQ(short in, long lgNumSteps, long idproc, long nproc)
{
if (CheckIndexOkay(in)) {

long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize);

switch (bfi[in].floatSize) {
case sizeof(float):

{
ComplexSingle *dp=(ComplexSingle

*)bfi[in].dataP;

{//Clear second half of data
float *tp=&dp[NumIndicies(idproc, nproc,

maxIndex)*bfi[in].numQ<<lgNumSteps].a;
long i=NumIndicies(idproc, nproc,

maxIndex)*bfi[in].numQ<<(lgNumSteps+1);
while (i--) tp[i]=0;
}

DoFFTYCSingleN(dp, lgNumSteps+1,
NumIndicies(idproc, nproc,

maxIndex)*bfi[in].numQ);

}
break;

case sizeof(double):
{
ComplexDouble *dp=(ComplexDouble

*)bfi[in].dataP;

{//Clear second half of data
double *tp=&dp[NumIndicies(idproc, nproc,

maxIndex)*bfi[in].numQ<<lgNumSteps].a;
long i=NumIndicies(idproc, nproc,

maxIndex)*bfi[in].numQ<<(lgNumSteps+1);
while (i--) tp[i]=0;
}

DoFFTYCDoubleN(dp, lgNumSteps+1,
NumIndicies(idproc, nproc,

maxIndex)*bfi[in].numQ);

}
break;

default:
break;
}

}
}

233

short CorrelElemBabyQ(short in, long ts1, long ts2, Complex *outP,
long spinType, Complex *cxP, long idproc, long nproc)

{short out=0;
if (outP)
if (CheckIndexOkay(in))
if (ts1>=0) if (ts2>=0)
if (ts1<bfi[in].numSteps)
if (ts2<bfi[in].numSteps)

{
Byte *rawWF1P=nil, *rawWF2P=nil;
long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize);
long myStI=StartIndex(idproc, nproc, maxIndex);
long myNumI=NumIndicies(idproc, nproc, maxIndex);

if (bfi[in].numQ<2) spinType=maxwellian;

if (1==bfi[in].dataMode) {
if (bfi[in].dataP) {

rawWF1P=bfi[in].dataP+myNumI*(2*bfi[in].floatSize)*ts1;

rawWF2P=bfi[in].dataP+myNumI*(2*bfi[in].floatSize)*ts2;
}

}
else {

}

if (rawWF1P&&rawWF2P) {
long nxp, nxpmx,

numGrids=bfi[in].sizeX+bfi[in].nvp*(bfi[in].numPreGridCells+bfi[in].nu
mPostGridCells);

nxp=bfi[in].nvp?bfi[in].sizeX/bfi[in].nvp:0;

nxpmx=nxp+bfi[in].numPreGridCells+bfi[in].numPostGridCells;

switch
(bfi[in].floatSize) {

case
sizeof(float):

switch (spinType) {
case fermion:

{float *wpA, *wpB, a=0, b=0, c=0, d=0, normA, normB;
Complex outCx;
long x=numGrids;
wpA=(float*)(rawWF1P);
wpB=(float*)(rawWF2P);

while (x--) {
if

(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

234

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpB[0+(x<<1)]+wpA[1+(x<<1)]*wpB[1+(x<<1)];
b=b+wpB[1+(x<<1)]*wpA[0+(x<<1)]-

wpA[1+(x<<1)]*wpB[0+(x<<1)];

c=c+wpA[0+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids]+wpA[1+(x<<1)+numGrid
s]*wpB[1+(x<<1)+numGrids];

d=d+wpB[1+(x<<1)+numGrids]*wpA[0+(x<<1)+numGrids]-
wpA[1+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids];

}
}

outCx.a=a*c-b*d;
outCx.b=b*c+a*d;

x=numGrids;
a=0;
b=0;
c=0;
d=0;
while (x--) {

if
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpB[0+(x<<1)+numGrids]+wpA[1+(x<<1)]*wpB[1+(x<<1)+nu
mGrids];

b=b+wpB[1+(x<<1)+numGrids]*wpA[0+(x<<1)]-
wpA[1+(x<<1)]*wpB[0+(x<<1)+numGrids];

c=c+wpA[0+(x<<1)+numGrids]*wpB[0+(x<<1)]+wpA[1+(x<<1)+numGrids]*wpB[1+
(x<<1)];

d=d+wpB[1+(x<<1)]*wpA[0+(x<<1)+numGrids]-
wpA[1+(x<<1)+numGrids]*wpB[0+(x<<1)];

}
}

outCx.a-=a*c-b*d;
outCx.b-=b*c+a*d;

x=numGrids;
a=0;
b=0;
c=0;
d=0;
while (x--) {

if
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpA[0+(x<<1)]+wpA[1+(x<<1)]*wpA[1+(x<<1)];

235

b=b+wpA[0+(x<<1)+numGrids]*wpA[0+(x<<1)+numGrids]+wpA[1+(x<<1)+numGrid
s]*wpA[1+(x<<1)+numGrids];

c=c+wpB[0+(x<<1)]*wpB[0+(x<<1)]+wpB[1+(x<<1)]*wpB[1+(x<<1)];

d=d+wpB[0+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids]+wpB[1+(x<<1)+numGrid
s]*wpB[1+(x<<1)+numGrids];

}
}

normA=a*b;
normB=c*d;

x=numGrids;
a=0;
b=0;
c=0;
d=0;
while (x--) {

if
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpA[0+(x<<1)+numGrids]+wpA[1+(x<<1)]*wpA[1+(x<<1)+nu
mGrids];

b=b+wpA[0+(x<<1)]*wpA[1+(x<<1)+numGrids]-
wpA[1+(x<<1)]*wpA[0+(x<<1)+numGrids];

c=c+wpB[0+(x<<1)]*wpB[0+(x<<1)+numGrids]+wpB[1+(x<<1)]*wpB[1+(x<<1)+nu
mGrids];

d=d+wpB[0+(x<<1)]*wpB[1+(x<<1)+numGrids]-
wpB[1+(x<<1)]*wpB[0+(x<<1)+numGrids];

}
}

normA-=a*a+b*b;
normB-=c*c+d*d;

normA=normA*normB;
if (normA>0) normA=1.0/sqrt(normA);
else normA=0;

CAccumSMult(outP[0], outCx, normA);
}

break;
case boson:

break;
case maxwellian:
default:

{

/* for(index=0; index<myNumI; index++) {

236

long x=(index+myStI)%numGrids, q=(index+myStI)/numGrids;

}*/
long q;
for(q=myStI/numGrids; q<=(myStI+myNumI)/numGrids; q++) {

long x;
float *wpA=(float*)(rawWF1P)+((q*numGrids-myStI)<<1),

wpB=(float)(rawWF2P)+((q*numGrids-myStI)<<1);
float a=0, b=0;

for(x=myStI-q*numGrids<0?0:myStI-q*numGrids;
(x<numGrids)&&(x<myStI+myNumI-q*numGrids);
x++) {

if
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):true)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+x<<1]*wpB[0+x<<1]+wpA[1+(x<<1)]*wpB[1+(x<<1)];
b=b+wpB[1+(x<<1)]*wpA[0+x<<1]-

wpA[1+(x<<1)]*wpB[0+x<<1];
}

}

cxP[q].a=outP[q].a+a;
cxP[q].b=outP[q].b+b;

}

}

MPI_Allreduce(cxP, outP, bfi[in].numQ<<1,
sizeof(myReal)==4?MPI_FLOAT:MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

/* {long q=bfi[in].numQ;
while (q--) {
{float *wpA, *wpB, a=0, b=0;
long x=numGrids;
wpA=(float*)(rawWF1P+bfi[in].dataFrameSize*q);
wpB=(float*)(rawWF2P+bfi[in].dataFrameSize*q);

while (x--) {
if

(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+x<<1]*wpB[0+x<<1]+wpA[1+(x<<1)]*wpB[1+(x<<1)];
b=b+wpB[1+(x<<1)]*wpA[0+x<<1]-

wpA[1+(x<<1)]*wpB[0+x<<1];
}

237

}
outP[q].a+=a;
outP[q].b+=b;
}

}
}*/

break;
}

break;
case

sizeof(double):
switch (spinType) {

case fermion:
{double *wpA, *wpB, a=0, b=0, c=0, d=0, normA, normB;
Complex outCx;
long x=numGrids;
wpA=(double*)(rawWF1P);
wpB=(double*)(rawWF2P);

while (x--) {
if

(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpB[0+(x<<1)]+wpA[1+(x<<1)]*wpB[1+(x<<1)];
b=b+wpB[1+(x<<1)]*wpA[0+(x<<1)]-

wpA[1+(x<<1)]*wpB[0+(x<<1)];

c=c+wpA[0+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids]+wpA[1+(x<<1)+numGrid
s]*wpB[1+(x<<1)+numGrids];

d=d+wpB[1+(x<<1)+numGrids]*wpA[0+(x<<1)+numGrids]-
wpA[1+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids];

}
}

outCx.a=a*c-b*d;
outCx.b=b*c+a*d;

x=numGrids;
a=0;
b=0;
c=0;
d=0;
while (x--) {

if
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpB[0+(x<<1)+numGrids]+wpA[1+(x<<1)]*wpB[1+(x<<1)+nu
mGrids];

b=b+wpB[1+(x<<1)+numGrids]*wpA[0+(x<<1)]-

238

wpA[1+(x<<1)]*wpB[0+(x<<1)+numGrids];

c=c+wpA[0+(x<<1)+numGrids]*wpB[0+(x<<1)]+wpA[1+(x<<1)+numGrids]*wpB[1+
(x<<1)];

d=d+wpB[1+(x<<1)]*wpA[0+(x<<1)+numGrids]-
wpA[1+(x<<1)+numGrids]*wpB[0+(x<<1)];

}
}

outCx.a-=a*c-b*d;
outCx.b-=b*c+a*d;

x=numGrids;
a=0;
b=0;
c=0;
d=0;
while (x--) {

if
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpA[0+(x<<1)]+wpA[1+(x<<1)]*wpA[1+(x<<1)];

b=b+wpA[0+(x<<1)+numGrids]*wpA[0+(x<<1)+numGrids]+wpA[1+(x<<1)+numGrid
s]*wpA[1+(x<<1)+numGrids];

c=c+wpB[0+(x<<1)]*wpB[0+(x<<1)]+wpB[1+(x<<1)]*wpB[1+(x<<1)];

d=d+wpB[0+(x<<1)+numGrids]*wpB[0+(x<<1)+numGrids]+wpB[1+(x<<1)+numGrid
s]*wpB[1+(x<<1)+numGrids];

}
}

normA=a*b;
normB=c*d;

x=numGrids;
a=0;
b=0;
c=0;
d=0;
while (x--) {

if
(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wpA[0+(x<<1)]*wpA[0+(x<<1)+numGrids]+wpA[1+(x<<1)]*wpA[1+(x<<1)+nu
mGrids];

b=b+wpA[0+(x<<1)]*wpA[1+(x<<1)+numGrids]-
wpA[1+(x<<1)]*wpA[0+(x<<1)+numGrids];

239

c=c+wpB[0+(x<<1)]*wpB[0+(x<<1)+numGrids]+wpB[1+(x<<1)]*wpB[1+(x<<1)+nu
mGrids];

d=d+wpB[0+(x<<1)]*wpB[1+(x<<1)+numGrids]-
wpB[1+(x<<1)]*wpB[0+(x<<1)+numGrids];

}
}

normA-=a*a+b*b;
normB-=c*c+d*d;

normA=normA*normB;
if (normA>0) normA=1.0/sqrt(normA);
else normA=0;

CAccumSMult(outP[0], outCx, normA);
}

break;
case boson:

break;
case maxwellian:
default:

{long q=bfi[in].numQ;
while (q--) {
{double *wp1, *wp2, a=0, b=0;
long x=numGrids;
wp1=(double*)(rawWF1P+bfi[in].dataFrameSize*q);
wp2=(double*)(rawWF2P+bfi[in].dataFrameSize*q);

while (x--) {
if

(nxp?((x%nxpmx>=bfi[in].numPreGridCells)&&(x%nxpmx<nxp+bfi[in].numPreG
ridCells)):1)

{//∫ <psi(x,t+tau)|psi(x,t)> dx

a=a+wp1[0+x<<1]*wp2[0+x<<1]+wp1[1+(x<<1)]*wp2[1+(x<<1)];
b=b+wp2[1+(x<<1)]*wp1[0+x<<1]-

wp1[1+(x<<1)]*wp2[0+x<<1];
}

}
outP[q].a+=a;
outP[q].b+=b;
}

}
}

break;
}

break;
default:

break;
}

}
}

return out;

240

}

#define MaxEigenMegs 32L
void CorrBabyQSpin(short in, long lgNumSteps, long spinType, Complex
*cxOutP, long cxOutRow, FILE *tempEigenFile, long idproc, long nproc);
void CorrBabyQSpin(short in, long lgNumSteps, long spinType, Complex
*cxOutP, long cxOutRow, FILE *tempEigenFile, long idproc, long nproc)

{
long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize);
if (bfi[in].numQ<2) spinType=maxwellian;
if (cxOutP) if (cxOutRow) {

{long i=bfi[in].numSteps*cxOutRow; //Clear output
while (i--) cxOutP[i].b=cxOutP[i].a=0;
}

switch (spinType) {
case fermion:

switch (bfi[in].floatSize) {
case sizeof(float):

{
ComplexSingle *dp=(ComplexSingle

*)bfi[in].dataP;
Complex

p12P=(Complex)(dp+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc,

maxIndex));
ComplexSingle *p1x2P=(ComplexSingle

*)(p12P+bfi[in].numSteps
*NumIndicies(idproc, nproc,

maxIndex));
ComplexSingle

*p2x2P=p1x2P+bfi[in].numSteps;
// ComplexSingle

*scratchP=p2x2P+bfi[in].numSteps;
double startTime=MPI_Wtime();
long x2;

//Clear arrays
{long i=bfi[in].numSteps

*NumIndicies(idproc, nproc,
maxIndex);

while (i--) p12P[i].b=p12P[i].a=0;
}

#ifdef testdata
printf("Generating test data\n");
{long ts=bfi[in].numSteps;
while (ts--) {

long x=NumIndicies(idproc, nproc,
maxIndex);

ComplexSingle
*d1tsP=dp+(ts*NumIndicies(idproc, nproc, maxIndex)*bfi[in].numQ);

ComplexSingle
*d2tsP=d1tsP+NumIndicies(idproc, nproc, maxIndex);

ComplexSingle tC;

241

float tr;
tC.a=cos((Pi/32.0)*ts);
tC.b=sin((-Pi/32.0)*ts);
while (x--) {

float
snx=sin((x+StartIndex(idproc, nproc, maxIndex))*(Pi/bfi[in].sizeX));

float
sn2x=sin(2*(x+StartIndex(idproc, nproc,
maxIndex))*(Pi/bfi[in].sizeX));

CScalar(d1tsP[x],tC,snx);
CMult(d2tsP[x],sn2x*tC,tC);
}

}
}

#endif

for(x2=0; x2<bfi[in].sizeX; x2++) {
printf(" x2= %d/%d\n", x2,

bfi[in].sizeX);

//Need to distribute Psi(x2)'s
{long root; //who has the data
for(root=0; (root<nproc)

&&((x2<StartIndex(root,
nproc, maxIndex))

||(x2>=StartIndex(root+1,
nproc, maxIndex))); root++) ;

if (idproc==root) {
long ts=bfi[in].numSteps;

while (ts--) {

p1x2P[ts]=dp[(ts*bfi[in].numQ)

*NumIndicies(idproc, nproc, maxIndex)
-

StartIndex(idproc, nproc, maxIndex)+x2];

p2x2P[ts]=dp[(ts*bfi[in].numQ+1)

*NumIndicies(idproc, nproc, maxIndex)
-

StartIndex(idproc, nproc, maxIndex)+x2];
}

}
else {//nothing to be done

}
printf(" #%d Bcasting Psi data at

x2=%d… \n", root, x2);

MPI_Bcast(p1x2P,

242

bfi[in].numSteps*2*2, MPI_FLOAT,
root, MPI_COMM_WORLD);

}

printf(" Forming Psi12(x1, %d,
t)…\n", x2);

//form a line of psi12
{
long ts=bfi[in].numSteps;
while (ts--) {

ComplexSingle
*p1tsP=&dp[(ts*bfi[in].numQ)

*NumIndicies(idproc, nproc, maxIndex)];
ComplexSingle

*p2tsP=&dp[(ts*bfi[in].numQ+1)

*NumIndicies(idproc, nproc, maxIndex)];
Complex *p12tsP=&p12P[ts

*NumIndicies(idproc,
nproc, maxIndex)];

long x1=NumIndicies(idproc,
nproc, maxIndex);

while (x1--) {
/*p1tsP[x1]*p2x2P[ts]

-
p2tsP[x1]*p1x2P[ts]; */

myReal
a=p1tsP[x1].a*(myReal)p2x2P[ts].a-
(myReal)p1tsP[x1].b*(myReal)p2x2P[ts].b

-
(myReal)p2tsP[x1].a*(myReal)p1x2P[ts].a+(myReal)p2tsP[x1].b*(myReal)p1
x2P[ts].b;

myReal
b=(myReal)p1tsP[x1].a*(myReal)p2x2P[ts].b+(myReal)p1tsP[x1].b*(myReal)
p2x2P[ts].a

-
(myReal)p2tsP[x1].a*(myReal)p1x2P[ts].b-
(myReal)p2tsP[x1].b*(myReal)p1x2P[ts].a;

p12tsP[x1].a=a;
p12tsP[x1].b=b;
}

}
}
{//Clearing second half of data
long ts=bfi[in].numSteps;
while (ts--) {

Complex *p12tsP=

&p12P[(ts+bfi[in].numSteps)
*NumIndicies(idproc,

nproc, maxIndex)];
long x1=NumIndicies(idproc,

nproc, maxIndex);

243

while (x1--) {
p12tsP[x1].a=0;
p12tsP[x1].b=0;
}

}
}

printf(" doing FFT %d times on a
%d array…\n",

NumIndicies(idproc, nproc,
maxIndex),

2L<<lgNumSteps);
/* DoFFTYCSingleN(p12P, lgNumSteps+1,

NumIndicies(idproc, nproc,
maxIndex)); */

DoFFTYCN(p12P, lgNumSteps+1,
NumIndicies(idproc, nproc,

maxIndex));

if (tempEigenFile) {
//eigenfunction save
long numWs=bfi[in].numSteps;
if

(maxIndex*(myReal)maxIndex*(myReal)sizeof(Complex)*(myReal)numWs>(MaxE
igenMegs<<20)

/*final file size
shouldn't exceed MaxEigenMegs*/)

numWs=(MaxEigenMegs<<20)/(maxIndex*(myReal)maxIndex*sizeof(Complex));
printf(" saving data for

%d fermion eigenfunctions into temporary file…\n"
, numWs);

/* {long w=8;
while (w--)
{long x1=NumIndicies(idproc,

nproc, maxIndex);
while (x1--)

p12P[x1+w*maxIndex].a=
0.01*exp(-

0.005*((x1-w)*(x1-w)+x2*x2));
}
}/**/

fwrite(p12P, 1L,
NumIndicies(idproc,

nproc, maxIndex)*sizeof(Complex)*numWs,
tempEigenFile);

if (ferror(tempEigenFile))
perror("fwrite etemp ");

}

printf(" summing into
output…\n");

244

//sum into correlation output
{long w=bfi[in].numSteps;
while (w--) {

Complex
*p12negwP=&p12P[(bfi[in].numSteps*2-1-w)

*NumIndicies(idproc,
nproc, maxIndex)];

Complex *p12wP=&p12P[w
*NumIndicies(idproc,

nproc, maxIndex)];
long x1=NumIndicies(idproc,

nproc, maxIndex);
myReal sumA=0, sumB=0;
while (x1--) {
/* sumA+=p12tsP[x1].a;

sumB+=p12tsP[x1].b; */

sumA+=p12wP[x1].a*p12wP[x1].a+p12wP[x1].b*p12wP[x1].b;

sumB+=p12negwP[x1].a*p12negwP[x1].a+p12negwP[x1].b*p12negwP[x1].b;
}

cxOutP[cxOutRow*w].a+=sumA;
cxOutP[cxOutRow*w].b+=sumB;
}

}

{
long etr=((bfi[in].sizeX-

(1+x2))*(MPI_Wtime()-startTime)/(1+x2));
long s, m, h;
char etrStr[64];
s=etr%60; etr/=60;
m=etr%60; etr/=60;
h=etr%24; etr/=24;
sprintf(etrStr, "ETR: %dd%2dh%2dm%2ds",

etr, h, m, s);
#ifdef __MEMORY__ //detects if on the Mac

logname(etrStr);
#endif

printf(" %s\n", etrStr);
}

}

printf(" summing output across
processors…\n");

MPI_Allreduce(cxOutP, p12P,
cxOutRow*bfi[in].numSteps*2,

MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

{long i=bfi[in].numSteps*cxOutRow;
//copy output

245

while (i--)
cxOutP[i]=((Complex*)p12P)[i];

}

{
long etr=(MPI_Wtime()-startTime);
long s, m, h;
s=etr%60; etr/=60;
m=etr%60; etr/=60;
h=etr%24; etr/=24;
printf("Time Elapsed:

%dd%2dh%2dm%2ds\n", etr, h, m, s);
}

}
break;

case sizeof(double):
break;

default:
break;

}

break;
case maxwellian:
default:

/*
printf("Doing FFTY… ");
DoFFTYBabyQ(in, lgNumSteps,

idproc, nproc);
printf("Done\n");

{
long w;

for(w=0; w<bfi[in].numSteps; w++)
{

if (!(w&0x3f))
printf("%d/%d\n", w, bfi[in].numSteps);

/* CorrelElemBabyQ(in, w, w,
cxOutP+(w*bfi[in].numQ),

spinType, cxP, idproc,
nproc); * /

}

}/**/
{
ComplexSingle *dp=(ComplexSingle

*)bfi[in].dataP;
ComplexSingle

*scratchP=dp+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc,

maxIndex);

//Clear second half

246

{long i=bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc,

maxIndex);
while (i--)

scratchP[i].b=scratchP[i].a=0;
}

#ifdef testdata
printf("Generating test data\n");
{long ts=bfi[in].numSteps;
while (ts--) {

long i=bfi[in].numQ
*NumIndicies(idproc, nproc,

maxIndex);
ComplexSingle *dtsP=dp+(ts*i);
ComplexSingle tC;
tC.a=cos((Pi/32.0)*ts);
tC.b=sin((-Pi/32.0)*ts);
while (i--)

dtsP[i]=tC;
}

}
#endif

printf(" doing FFT on %d array %d
times\n",

2L<<lgNumSteps,
NumIndicies(idproc, nproc, maxIndex)*bfi[in].numQ);

DoFFTYCSingleN(dp, lgNumSteps+1,
NumIndicies(idproc, nproc,

maxIndex)*bfi[in].numQ);

if (tempEigenFile) {
//eigenfunction save
long numWs=bfi[in].numSteps;
if

(maxIndex*bfi[in].numQ*sizeof(ComplexSingle)*numWs>(MaxEigenMegs<<20)/
32 megs/)

numWs=(MaxEigenMegs<<20)/(maxIndex*bfi[in].numQ*sizeof(ComplexSingle))
;

fwrite(dp, 1,
NumIndicies(idproc, nproc,

maxIndex)*bfi[in].numQ*sizeof(ComplexSingle)*numWs,
tempEigenFile);

}

printf(" summing into correlation
output…\n");

{long w=bfi[in].numSteps;
while (w--) {

long q=bfi[in].numQ;
while (q--) {

ComplexSingle
*ptsqP=&dp[(w*bfi[in].numQ+q)

247

*NumIndicies(idproc,
nproc, maxIndex)];

long x1=NumIndicies(idproc,
nproc, maxIndex);

float sumA=0, sumB=0;
while (x1--) {

/*sumA+=ptsqP[x1].a;
sumB+=ptsqP[x1].b; */

sumA+=ptsqP[x1].a*ptsqP[x1].a+ptsqP[x1].b*ptsqP[x1].b;
}

cxOutP[cxOutRow*w+q].a+=sumA*bfi[in].sizeX;

cxOutP[cxOutRow*w+q].b+=sumB*bfi[in].sizeX;
}

}
}

printf(" summing output across
processors…\n");

MPI_Allreduce(cxOutP, scratchP,
cxOutRow*bfi[in].numSteps*2,

MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

{long i=bfi[in].numSteps*cxOutRow;
//copy output

while (i--)
cxOutP[i]=((Complex*)scratchP)[i];

}

}
break;
}
}

}

void GatherEigenBabyQData(short in, long lgNumSteps, long spinType,
const char *outEigenFN, FILE *tempEigenFile, long idproc, long nproc);
void GatherEigenBabyQData(short in, long lgNumSteps, long spinType,
const char *outEigenFN, FILE *tempEigenFile, long idproc, long nproc)

{//Shuffles data from the temp files into the final eigenstate
output files

//This rourine is primarily network and disk i/o intensive. Not
much computation.

long maxIndex=bfi[in].dataFrameSize/(2*bfi[in].floatSize);
if (bfi[in].numQ<2) spinType=maxwellian;
if (tempEigenFile) if (outEigenFN) {

rewind(tempEigenFile); //Reset to beginning

switch (spinType) {
case fermion:

248

switch (bfi[in].floatSize) {
case sizeof(float):

{
Complex *dp=(Complex *)bfi[in].dataP;
Complex

*scratchP=dp+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc,

maxIndex)*sizeof(ComplexSingle)/sizeof(Complex);
MPI_Request *mpiReqP=(MPI_Request

*)(scratchP+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc,

maxIndex)*sizeof(ComplexSingle)/sizeof(Complex));
MPI_Status *mpiStatusP=(MPI_Status

*)(mpiReqP+nproc);
long lgElemSize=0,

numWs=bfi[in].numSteps,
chunkWs;

//Assuming sizeX is evenly divisible by
nproc

for(;
sizeof(Complex)*maxIndex/nproc>(4L<<lgElemSize); lgElemSize++) ;

if
(maxIndex*(myReal)maxIndex*(myReal)sizeof(Complex)*(myReal)numWs>(MaxE
igenMegs<<20)/*MaxEigenMegs megs*/)

numWs=(MaxEigenMegs<<20)/(maxIndex*(myReal)maxIndex*(myReal)sizeof(Com
plex));

chunkWs=bfi[in].numSteps*bfi[in].numQ*sizeof(ComplexSingle)/
(maxIndex*sizeof(Complex)*nproc);

if (chunkWs<1) chunkWs=1;

if (chunkWs>numWs) chunkWs=numWs;

if (idproc) {
long w;
for(w=0; w<numWs; w+=chunkWs) {

long sendWs=chunkWs, x2;
if (w+sendWs>numWs) sendWs=numWs-w;

printf("Sending data for eigenstates %d to %d out of
%d.\n", w, sendWs+w, numWs);

for(x2=0; x2<maxIndex; x2++) {
fseek(tempEigenFile,

(w+x2*numWs)*NumIndicies(idproc, nproc,
maxIndex)*sizeof(Complex),

SEEK_SET);
fread(dp+x2*sendWs*NumIndicies(idproc, nproc,

maxIndex),

249

1L,
sendWs*NumIndicies(idproc, nproc,

maxIndex)*sizeof(Complex),
tempEigenFile);

}

//Copy & transpose
TransposeInMNOutData((long*)dp,

(long*)scratchP, lgElemSize, sendWs, maxIndex);

MPI_Send(scratchP,
NumIndicies(idproc, nproc,

maxIndex)*maxIndex*sizeof(Complex)*sendWs,
MPI_BYTE, 0, idproc, MPI_COMM_WORLD);

}

}
else {//node 0

long w;
FILE *outEigenFP=fopen(outEigenFN, "wb");

//write header
if (outEigenFP) {

BabyQBinaryHeaderStruct header;
long i=sizeof(BabyQBinaryHeaderStruct)>>2,

tp=(long)&header;
while (i--) tp[i]=0;

rewind(outEigenFP);

header.negVersion=-1L;
header.dataOffset=sizeof(BabyQBinaryHeaderStruct); //in

bytes from top of struct
header.floatSize=sizeof(myReal);
header.numSteps=numWs;
header.numQ=maxIndex;
header.sizeX=maxIndex;

fwrite(&header, 1L,
sizeof(BabyQBinaryHeaderStruct),
outEigenFP);

}

for(w=0; w<numWs; w+=chunkWs) {
long sendWs=chunkWs;
if (w+sendWs>numWs) sendWs=numWs-w;

printf("Receiving and processing data for eigenstates %d
to %d out of %d.\n", w, sendWs+w, numWs);

{long x2;
for(x2=0; x2<maxIndex; x2++) {

250

int err;
err=fseek(tempEigenFile,

(w+x2*numWs)*NumIndicies(idproc, nproc,
maxIndex)*sizeof(Complex),

SEEK_SET);
if (err) printf("fseek err= %d\n", err);
err=fread(dp+x2*sendWs*NumIndicies(idproc, nproc,

maxIndex),
1L,
sendWs*NumIndicies(idproc, nproc,

maxIndex)*sizeof(Complex),
tempEigenFile);

if (ferror(tempEigenFile)) printf("fread err= %d
\n", ferror(tempEigenFile));

}
}

{long i;
for(i=1; i<nproc; i++) {

MPI_Irecv(scratchP+StartIndex(i, nproc,
maxIndex)*maxIndex*sendWs,

NumIndicies(i, nproc,
maxIndex)*maxIndex*sizeof(Complex)*sendWs,

MPI_BYTE, i, i, MPI_COMM_WORLD,
mpiReqP+i);

}
}

/* {
long x1;
x1=maxIndex;
while (x1--) {

long tr1=(x1-w*2-1);
long x2=maxIndex;
tr1*=tr1;
while (x2--) {

myReal tr=(x2-w-1);
dp[x2+x1*maxIndex*sendWs].a=0.000001*exp(-

0.001*(tr1+tr*tr));
dp[x2+x1*maxIndex*sendWs].b=0;
}

}
}*/

//Copy & transpose
TransposeInMNOutData((long*)dp, (long*)scratchP,

lgElemSize, sendWs, maxIndex);

MPI_Waitall(nproc-1, mpiReqP+1, mpiStatusP+1);

TransposeInMNOutData((long*)scratchP, (long*)dp,
lgElemSize, maxIndex*sendWs, nproc);

251

if (outEigenFP) {
fwrite(dp, 1,

maxIndex*maxIndex*sizeof(Complex)*sendWs,
outEigenFP);

}

}

if (outEigenFP)
fclose(outEigenFP);

}

}
break;

case sizeof(double):
break;

default:
break;

}

break;
case maxwellian:
default:

{
ComplexSingle *dp=(ComplexSingle

*)bfi[in].dataP;
ComplexSingle

*scratchP=dp+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc,

maxIndex);
MPI_Request *mpiReqP=(MPI_Request

*)(scratchP+bfi[in].numSteps*bfi[in].numQ
*NumIndicies(idproc, nproc,

maxIndex));
MPI_Status *mpiStatusP=(MPI_Status

*)(mpiReqP+nproc);
long lgElemSize=0,

numWs=bfi[in].numSteps, chunkWs=bfi[in].numSteps/nproc;

//Assuming sizeX is evenly divisible by
nproc

for(;
bfi[in].dataFrameSize/nproc>(4L<<lgElemSize); lgElemSize++) ;

if
(maxIndex*bfi[in].numQ*sizeof(ComplexSingle)*numWs>(MaxEigenMegs<<20))

numWs=(MaxEigenMegs<<20)/(maxIndex*bfi[in].numQ*sizeof(ComplexSingle))
;

if (chunkWs>numWs) chunkWs=numWs;

252

if (idproc) {
long w;
for(w=0; w<numWs; w+=chunkWs) {

long sendWs=chunkWs;
if (w+sendWs>numWs) sendWs=numWs-w;

MPI_Send(dp+NumIndicies(idproc, nproc,
maxIndex)*bfi[in].numQ*w,

NumIndicies(idproc, nproc,
maxIndex)*bfi[in].numQ*sizeof(ComplexSingle)*sendWs,

MPI_BYTE, 0, idproc, MPI_COMM_WORLD);

}

}
else {//node 0

long w;
FILE *outEigenFP=fopen(outEigenFN, "w");

//write header
if (outEigenFP) {

BabyQBinaryHeaderStruct header;
long i=sizeof(BabyQBinaryHeaderStruct)>>2,

tp=(long)&header;
while (i--) tp[i]=0;

header.negVersion=-1L;
header.dataOffset=sizeof(BabyQBinaryHeaderStruct); //in

bytes from top of struct
header.floatSize=sizeof(float);
header.numSteps=numWs;
header.numQ=bfi[in].numQ;
header.sizeX=maxIndex;

fwrite(&header, 1,
sizeof(BabyQBinaryHeaderStruct),
outEigenFP);

}

for(w=0; w<numWs; w+=chunkWs) {
long sendWs=chunkWs;
if (w+sendWs>numWs) sendWs=numWs-w;

{long i;
for(i=1; i<nproc; i++) {

MPI_Irecv(scratchP+StartIndex(i, nproc,
maxIndex)*bfi[in].numQ*w,

NumIndicies(i, nproc,
maxIndex)*bfi[in].numQ*sizeof(ComplexSingle)*sendWs,

MPI_BYTE, i, i, MPI_COMM_WORLD,
mpiReqP+i);

253

}
}

//Copy & transpose
TransposeInMNOutData((long*)dp+NumIndicies(idproc, nproc,

maxIndex)*bfi[in].numQ*w,
(long*)scratchP, lgElemSize, 1,

bfi[in].numQ*sendWs);

MPI_Waitall(nproc-1, mpiReqP+1, mpiStatusP+1);

TransposeInMNOutData((long*)dp, (long*)scratchP,
lgElemSize, bfi[in].numQ*sendWs, nproc);

if (outEigenFP) {
fwrite(scratchP, 1,

maxIndex*bfi[in].numQ*sizeof(ComplexSingle)*sendWs,
outEigenFP);

}

}

if (outEigenFP)
fclose(outEigenFP);

}

}
break;
}
}

}

void CorrelateBabyqBinFileSpin(const char *inFileName, const char
*outFileName, const char *outEigenFileName, short spinType,

long idproc, long nproc)
{
OSErr err;
long nextCheckEscape=0;

if (inFileName) {
short fref;

printf("Opening %s… \n", inFileName);
fref=OpenBabyQBinFile(inFileName, idproc, nproc);

if (fref) {

if (outFileName) {
Handle correlOutH=nil;
long numQ=GetNumQ(fref),

numSteps=GetNumSteps(fref);
unsigned long lgNumQ, lgNumSteps;

254

switch (spinType) {
case fermion:
case boson:

if (numQ>1) numQ=1;
break;

case maxwellian:
default: break;
}

for(lgNumQ=0; numQ>(1L<<lgNumQ); lgNumQ++) ;
for(lgNumSteps=30; numSteps<(1L<<lgNumSteps);

lgNumSteps--) ;

correlOutH=NewHandle(sizeof(Complex)*
(numSteps+2)<<lgNumQ);

if (correlOutH) {
Complex *correlOutTop;
Complex *cxP;
long leaving=0;
FILE *tempEigenFile=nil;
char tEFN[FILENAME_MAX]="";

MoveHHi(correlOutH);
HLock(correlOutH);

{long *tp=(long*)*correlOutH,
i=GetHandleSize(correlOutH)>>2;

while(i--) tp[i]=0; }
correlOutTop=(Complex*)*correlOutH;
cxP=(correlOutTop+(numSteps<<lgNumQ));

printf("Attempting to load all data…");
if (LoadAllBabyQData(fref, idproc,

nproc)) {

printf("Renormalizing data…");
RenormalizeBabyQData(fref,

spinType, idproc, nproc);

if (outEigenFileName) {
sprintf(tEFN, "%sTemp%d/%d",

outEigenFileName, idproc, nproc);
tempEigenFile=fopen(tEFN,

"w+b");
if (tempEigenFile) {

rewind(tempEigenFile);
}

}

printf("Doing Correlation of %d
time steps…\n", numSteps);

255

CorrBabyQSpin(fref, lgNumSteps,
spinType,

correlOutTop, 1L<<lgNumQ,
tempEigenFile,

idproc, nproc);

}
else {

leaving=1;
}

if (!leaving) if (!idproc) { FILE *outfp=nil;
//Only node 0 writes

/* if (tSFP.sfReplacing)
FSpDelete(&tSFP.sfFile);

FSpCreate(&tSFP.sfFile, 'R*ch', 'TEXT',
tSFP.sfScript); */

printf("Opening out file…\n");
// FSpOpenDF(&tSFP.sfFile, fsWrPerm, &outref);

outfp=fopen(outFileName, "w");

printf("Writing output…\n");

#ifdef mathematica
{long q;
for(q=0; q<numQ; q++) {

if (numQ>1) {
fprintf(outfp, "%s", q?",\n":"{"/*}*/);
}

{
long tau;

for(tau=0; tau<(numSteps); tau++)
{

myReal
adjust=1.0/*((myReal)numSteps-tau)*/;

myReal
ca=correlOutTop[q+(tau<<lgNumQ)].a*=adjust,

cb=correlOutTop[q+(tau<<lgNumQ)].b*=adjust;
long

ex=ca?log10(fabs(ca)):0;

fprintf(outfp, "%s",
tau?",\n":"{"/*}*/);

ca*=exp(-log(10.0)*ex);
fprintf(outfp, "%-.12g *

10^%d", ca, ex);
ex=cb?log10(fabs(cb)):0;
fprintf(outfp, " + I* ");
cb*=exp(-log(10.0)*ex);
fprintf(outfp, "%-.12g *

256

10^%d", cb, ex);

}
}

fprintf(outfp, /*{*/"}");

}
if (numQ>1) {

fprintf(outfp, /*{*/"}");
}

}
#else

{long tau;
for(tau=0; tau<(numSteps); tau++) {

{
long q;

for(q=0; q<numQ; q++) {
myReal

adjust=1.0/*((myReal)numSteps-tau)*/;
myReal

ca=correlOutTop[q+(tau<<lgNumQ)].a*=adjust,

cb=correlOutTop[q+(tau<<lgNumQ)].b*=adjust;

fprintf(outfp, "%-16.12g",
ca);

fprintf(outfp, "\t");
fprintf(outfp, "%-16.12g",

cb);
fprintf(outfp, "\t");

}
}

fprintf(outfp, "\n");

}
}

#endif

if (0) {
//Now, Fourier transform the data
printf("Doing FFT…");
DoFFTYC(correlOutTop, lgNumSteps, lgNumQ);
printf("Writing FT…");
{long q;

fprintf(outfp, "\n\n");

for(q=0; q<numQ; q++) {
if (numQ>1) {

257

fprintf(outfp, "%s", q?",\n":"{" /*}*/);
}

{
long tau;

for(tau=0; tau<(1<<(lgNumSteps-
1)); tau++) {

fprintf(outfp, "%s",
tau?",\n":"{"/*}*/);

fprintf(outfp, "%-16.12g +
I* %-16.12g",

correlOutTop[q+(tau<<lgNumQ)].a,

correlOutTop[q+(tau<<lgNumQ)].b);
}

}

fprintf(outfp, /*{*/"}");

}
if (numQ>1) {

fprintf(outfp, /*{*/"}");
}

}
}

#undef fprint

printf("\nClosing out file\n");
fclose(outfp);

}

if (tempEigenFile) {
printf("\nGathering Eigenstate

data to node zero…\n");
GatherEigenBabyQData(fref,

lgNumSteps, spinType,
outEigenFileName,

tempEigenFile, idproc, nproc);

fclose(tempEigenFile);
remove(tEFN);
}

HUnlock(correlOutH);
DisposeHandle(correlOutH);
correlOutH=nil;
}

else printf(" Out of Memory!\n");

258

}

printf("Closing…\n");
CloseBabyQBinFile(fref, idproc, nproc);
}

else {
printf("Unable to open input babyq data file.\n");
perror(inFileName);
}

}

}

Listing G. Quantum data reader, correlation analysis, and eigenstate

extraction code.

259

XI. References

1. M. Planck, “Ueber irreversible Strahlungsvorgänge”, Ann. d. Phys. , 1, p.

69, (1900); M. Planck, “Entropie und Temperatur strahlender Wärme”,

Ann. d. Phys. , 1, p. 719, (1900).

2. A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes

betreffenden heuristischen Gesichtspunkt”, Ann. d. Phys. , 17, p. 132,

(1905).

3. L. de Broglie, “Recherches sur la théorie des Quanta”, Ann. d. Phys. , (10)

3, p. 22, 1925 (Thèses, Paris 1924).

4. E. Schrödinger, “Quantiseirung als Eigenwertproblem”, Ann. d. Phys. , 79,

p. 361, (1926); E. Schrödinger, Ann. d. Phys. , 79, p. 489, (1926); E.

Schrödinger, Ann. d. Phys. , 80, p. 437, (1926); E. Schrödinger, Ann. d.

Phys., 81, p. 109, (1926).

5. Commonly known today as “WKB”, the method, as it was originally

260

presented, was designed specifically for solving Schrödinger’s equation

of wave mechanics. It is in such common use today that citations to the

original references are difficult to find. The original three papers are:

• G. Wentzel, “Eine Verallgemeinerung der Quantenbedingungen für

Zwecke der Wellenmechanik”, Zeitschrift für Physik, 38, p. 518, (1926);

• H. A. Kramers, “Wellenmechanik und halbzahlige Quantisierung”,

Zeitschrift für Physik, 39, p. 828, (1926);

• L. Brillouin, “La mècanique ondulatoire de Schrödinger; une mèthode

gènèrale de rèsolution par approximations successives”, Comptes Rendus

(Académie de Sciences), 183, p. 24, (1926).

6. J. H. Van Vleck, “The Correspondence Principle in the Statistical

Interpretation of Quantum Mechanics”, Proc. Natl. Acad. Sci. (USA), 14, p.

178 (1928).

7. P. M. Dirac, Physikalische Zeitschrift der Sowjetunion, 3, p. 1 (1933).

8. R. P. Feynman, Rev. Mod. Phys., 20, p. 367 (1948).

9. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals,

(McGraw-Hill, Inc., New York, 1965).

10. M. C. Gutzwiller, “Phase-Integral Approximation in Momentum Space

and the Bound States of an Atom”, J. Math. Phys., 8, p. 1979 (1967).

11. E. Heller, J. Chem. Phys., 94, p. 2723, (1991).

12. S. Tomsovic and E. Heller, Phys. Rev. Lett. , 67, 6, p. 664, (1991).

261

13. E. Heller and S. Tomsovic, “Postmodern Quantum Mechanics”, Physics

Today, 46, No. 7, p. 38, (1993), and references therein.

14. S. Tomsovic and E. Heller, Phys. Rev. Lett. , 70, p. 1405, (1993).

15. S. Tomsovic and E. J. Heller, “Long-time semiclassical dynamics of chaos:

The stadium billiard”, Phys. Rev. E, 47, p. 282, (1993).

16. V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximations in Quantum

Mechanics, (Reidel, Dordrecht, 1981), English translation.

17. L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New

York, 1981) and references therein.

18. M. A. Sepúlveda, S. Tomsovic, E. Heller, Phys. Rev. Lett. , 69, p. 402, (1992).

19. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, (Springer-

Verlag, New York, 1990).

20. O. Buneman, Physical Review, 115, p. 503, (1959).

21. J. M. Dawson, Princeton University Plasma Physics Laboratory, Project

Matterhorn Rept., MATT-4, (1959).

22. J. M. Dawson, Princeton University Plasma Physics Laboratory, Project

Matterhorn Rept., MATT-31, (1960).

23. J. M. Dawson, Physics of Fluids, 5, p. 445, (1962).

24. J. M. Dawson in Methods in Computational Physics, 9, Ed. by Alder,

Fernbach, and Rotenburg (Academic Press, New York, 1970), p. 1.

25. R. W. Hockney, Physics of Fluids, 9, p. 1826, (1966).

262

26. J. W. Cooley and J. W. Tukey, Mathematics of Computation, 19, 297, (1965).

27. J. M. Dawson, C. G. Hsi, and R. Shanny, Princeton University Plasma

Physics Laboratory, Project Matterhorn Rept., MATT-719, (1969).

28. J. M. Dawson, Rev. of Mod. Phys., 55, p. 403, (1983).

29. J. M. Dawson, V. K. Decyk, R.D. Sydora, and P. Liewer, “High-

Performance Computing and Plasma Physics”, Physics Today, 46, No. 3,

p. 64, (1993).

30. V. K. Decyk, “Parallel Processing of Particle Simulation Models”,

Proceedings of the International Workshop on Plasma Physics, Pichl,

Austria, Feb. 1992, in Current Topics in Astrophysical and Fusion Plasma

Research, M.F. Heyn and W. Kernbichler, ed. [dbu-[Dbu Graz, Austria,

1992], p. 187.

31. J. M. Dawson and V. K. Decyk, “Particle Modeling of Plasmas on Super-

computers”, International Journal of Supercomputer Applications, 1, p. 24,

(1987).

32. J. M. Dawson, “The Numerical Tokamak: A Grand Challenge for Fusion

Plasma Modeling”, Proc. of IAEA Technical Committee Meeting on Advances

in Simulation and Modeling Thermonuclear Plasmas, Montreal, Quebec,

Canada, 1 (1992).

33. J. M. Dawson, “Computer Modeling of Plasma: Past, Present, and

Future”, Phys. Plasmas, 2, p. 6 (1995).

263

34. V. K. Decyk, “How to Write (Nearly) Portable Fortran Programs for

Parallel Computers”, Computers in Physics, 7, p. 418, (1993).

35. V. K. Decyk, “Skeleton PIC Codes for Parallel Computers”, Computer

Physics Communications, 87, p. 87, (1995).

36. V. K. Decyk, D. E. Dauger, P. R. Kokelaar, “How to Build an AppleSeed:

A Parallel Macintosh Cluster for Numerically Intensive Computing”,

Physica Scripta, T84, p. 85-88, (2000).

37. R. B. Gerber, V. Buch, and M. A. Ratner, “Simplified time-dependent self

consistent field approximation for intramolecular dynamics”, Chem. Phys.

Lett., 91, p. 173, (1982).

38. U. Peskin and M. Steinberg, “A temperature-dependent Schrödinger

equation based on a time-dependent self consistent field approximation”,

J. Chem. Phys., 109, p. 704, (1998).

39. K. M. Christoffel and P. Brumer, “Quantum and classical dynamics in the

stadium billiard”, Phys. Rev. A, 33, p. 1309, (1986).

40. E. J. Heller, “Frozen Gaussians: a very simple semiclassical

approximation”, J. Chem. Phys., 75, p. 2923, (1981).

41. N. Makri, “Time-dependent self-consistent field approximation with

explicit 2-body correlations”, Chem. Phys. Lett., 169, p. 541, (1990).

42. M. F. Herman, E. Kluk, and H. L. Davis, “Comparison of the

propagation of semiclassical frozen Gaussian wave functions with

264

quantum propagation for a highly excited anharmonic oscillator,” J.

Chem. Phys., 84, p. 326, (1986).

43. M. S. Child, Semiclassical mechanics with molecular applications. Oxford:

Clarendon, (1991).

44. K. G. Kay, “Semiclassical propagation for multidimensional systems by

an initial value method”, J. Chem. Phys., 101 (3), p. 2250, (1994).

45. A. R. Walton and D. E. Manolopoulos, “A new semiclassical initial value

method for Franck-Condon spectra”, Mol. Phys., 87, p. 961, (1996).

46. X. Sum, H. B. Wang, and W. H. Miller, “Semiclassical theory of

electronically nonadiabatic dynamics: Results of a linearized

approximation to the initial value representation”, J. Chem. Phys., 109, p.

7064, (1998).

47. K. Thompson and N. Makri, “Rigorous forward-backward semiclassical

formation of many-body dynamics”, Phys. Rev. E, 59, p. 4729, (1999).

48. L. Kaplan and E. J. Heller, “Overcoming the Wall in Semiclassical Baker’s

Map”, Phys. Rev. Lett. , 76, p. 1453, (1996).

49. G. Campolieti and P. Brumer, “Semiclassical initial value approach for

chaotic long-lived dynamics”, J. Chem. Phys., 109, p. 2999, (1998).

50. N. T. Maitra and E. J. Heller, “Semiclassical amplitudes: Supercaustics and

the whisker map”, Phys. Rev. A, 61, p. 0212107-1, (1999).

51. M. Brack and R. K. Bhaduri, Semiclassical Physics (Addison-Wesley, Inc.,

265

New York, 1997) and references therein.

52. E. J. Heller, in Chaos and Quantum Physics, Proceedings from Les Houchs

1989 (North-Holland, Amsterdam, 1989).

53. F. P. Simotti, E. Vergini, and M. Saraceno, “Quantitative study of scars in

the boundary section of the stadium billiard”, Phys. Rev. E, 56, p. 3859,

(1997).

54. J. S. Townsend, A Modern Approach to Quantum Mechanics (McGraw-Hill,

Inc., New York, 1992).

55. P. C. Liewer and V. K. Decyk, “A General Concurrent Algorithm for

Plasma Particle-in-Cell Codes”, J. Computational Phys., 85, p. 302, (1993).

56. Parallel 1-D FFT routine written by Viktor K. Decyk, unpublished.

57. V. K. Decyk, S. R. Karmesin, A. de Boer, and P. C. Liewer, “Optimization

of particle-in-cell codes on reduced instruction set computer processors”,

Computers In Physics, 10, p. 290, (1996).

58. D. Neuhauser, J. Chem. Phys., 93 (4), p. 2611, (1990).

59. V. K. Decyk, “Wave-particle diagnostics for plasma simulation”, Space

Science Reviews, 42, p. 113, (1985).

60. See http://www.stat.ucla.edu/research/gSCAD/

61. See http://exodus.physics.ucla.edu/appleseed/

62. S. Ichimaru, Basic Principles of Plasma Physics: A Statistical Approach (W. A.

Benjamin, Inc., Reading, Massachusetts, 1973).

266

63. J. M. Dawson, “Radiation from Plasmas”, Adv. Plasma Phys., 1, p. 1 (1968).

64. J. M. Dawson, “Irreversible Statistical Mechanics”, Course 215B, Non-

equilibrium Statistical Mechanics, APS, UCLA (1987).

65. N. Rostoker, R. Aamodt, and O. Eldridge, Ann. Phys. , 31, p. 243 (1965).

66. A. G. Sitenko and A. A. Gurin, JETP, 22, p. 1089 (1966).

67. A. I. Akheizer, I. A. Akhiezer, and A. G. Sitenko, JETP, 14, p. 462 (1961).

68. A. G. Sitenko, Electromagnetic Fluctuations in Plasma (Academic press,

New York, 1967).

69. A. I. Akheizer, I. A. Akhiezer, R. V. Plovin, A. G. Sitenko, and K. N.

Stepanov, Plasma Electrodynamics (Pergamon Press, Oxford, 1975), Vol. 2.

70. M. Opher and R. Opher, Phys. Rev. Lett. , 79, p. 2628, (1997).

71. M. Opher and R. Opher, Phys. Rev. Lett. , 82, p. 4835, (1999).

72. M. Opher and R. Opher, Astrophys. J., 535, p. 473, (2000).

73. M. Opher and R. Opher, astro-ph/00063262. (submitted to Phys. Rev.

Lett.)

74. M. Opher, L. O. Silva, D. E. Dauger, V. K. Decyk and J. M. Dawson,

submitted to Physics of Plasmas, October 2000.

75. F. Haas, G. Manfredi, and M. Feix, “Mutlistream model for quantum

plasmas”, Phys. Rev. E, 62, p. 2763 (2000).

76. A. B. Langdon, “Kinetic theory for fluctuations and noise in computer

simulation of plasma”, Physics of Fluids, 22, No. 1, p. 163, (1979).

267

77. V. K. Decyk and J. E. Slottow, “Supercomputers in the classroom”,

Computers in Physics, 3, No. 2, p. 50, (1989).

78. J. M. Dawson and T. Nakayama, “Kinetic Structure of a Plasma”, Physics

of Fluids, 9, No. 2, p. 252, (1966).

79. Such as the Atom in a Box shareware available at

http://dauger.com/orbitals/

80. A. Einstein, Ann. d. Phys. , “Zur Elektrodynamik bewegter Körper”, 17,

861, (1905).

81. R. D. Ferraro, P. C. Liewer, and V. K. Decyk, “Dynamic Load Balancing

for a 2D Concurrent Plasma PIC Code”, J. Computational Phys., 109, p.

329, (1993).

82. P. C. Liewer, V. K. Decyk, J. M. Dawson, and B. Lembege, “Numerical

Studies of Electron Dynamics in Oblique Quasi-Perpendicular

Collisionless Shock Waves”, J. Geophysical Research , 96, p. 9455, (1991).

83. D. E. Dauger, “Simulation and study of Fresnel diffraction for arbitrary

two-dimensional apertures”, Computers In Physics, 10 (6), p. 591, (1996).

84. C. K. Chui, Introduction to Wavelets (Academic Press, New York, 1992).

268

